Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Smarter memory device holds key to greener gadgets: Fast, low-energy memory for MP3s, smartphones and cameras could become a reality thanks to a development by scientists.

Abstract:
Fast, low-energy memory for MP3s, smartphones and cameras could become a reality thanks to a development by scientists.

Researchers have created a tiny device that improves on existing forms of memory storage.

Smarter memory device holds key to greener gadgets: Fast, low-energy memory for MP3s, smartphones and cameras could become a reality thanks to a development by scientists.

Edinburgh, UK | Posted on March 29th, 2011

Conventional methods use electronic devices to convert data into signals that are stored as binary code. This latest device uses a tiny mechanical arm to translate the data into electrical signals. This allows for much faster operation and uses much less energy compared with conventional memory storage tools.

The device records data by measuring the current passing through a carbon nanotube, and the binary value of the data is determined by an electrode that controls the flow of current.

Scientists at the University of Edinburgh, who helped create the device, say it could offer gadget designers a way to create faster devices with reduced power consumption.

Previous attempts to use carbon nanotube transistors for memory storage hit a stumbling block because they had low operational speed and short memory retention times.

By using a mechanical arm to charge the electrode - which operates much faster than conventional memory devices - scientists have been able to overcome these problems.

The research, carried out in collaboration with Konkuk University and Seoul National University, Korea, was published in Nature Communications and supported by EaStCHEM.

Professor Eleanor Campbell of the University of Edinburgh's School of Chemistry, who took part in the study, said: "This is a novel approach to designing memory storage devices. Using a mechanical method combined with the benefits of nanotechnology enables a system with superior speed and energy efficiency compared with existing devices."

####

For more information, please click here

Contacts:
Catriona Kelly

44-131-651-4401

Copyright © University of Edinburgh

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Sunblock poses potential hazard to sea life August 20th, 2014

Rice physicist emerges as leader in quantum materials research: Nevidomskyy wins both NSF CAREER Award and Cottrell Scholar Award August 20th, 2014

Graphene may be key to leap in supercapacitor performance August 20th, 2014

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer August 20th, 2014

Memory Technology

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Can our computers continue to get smaller and more powerful? University of Michigan computer scientist reviews frontier technologies to determine fundamental limits of computer scaling August 13th, 2014

An Inkjet-Printed Field-Effect Transistor for Label-Free Biosensing August 11th, 2014

Rice's silicon oxide memories catch manufacturers' eye: Use of porous silicon oxide reduces forming voltage, improves manufacturability July 10th, 2014

Discoveries

Sunblock poses potential hazard to sea life August 20th, 2014

Rice physicist emerges as leader in quantum materials research: Nevidomskyy wins both NSF CAREER Award and Cottrell Scholar Award August 20th, 2014

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer August 20th, 2014

Ultrasonic Waves Applied in Production of Graphene Nanosheets August 20th, 2014

Announcements

Rice physicist emerges as leader in quantum materials research: Nevidomskyy wins both NSF CAREER Award and Cottrell Scholar Award August 20th, 2014

Graphene may be key to leap in supercapacitor performance August 20th, 2014

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer August 20th, 2014

Ultrasonic Waves Applied in Production of Graphene Nanosheets August 20th, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics

Graphene may be key to leap in supercapacitor performance August 20th, 2014

Could hemp nanosheets topple graphene for making the ideal supercapacitor? August 12th, 2014

Cylinder scanning system used in the ZylScan-System of the Breitmeier Messtechnik Company August 5th, 2014

Used-cigarette butts offer energy storage solution August 5th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE