Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Deciphering the Elements of Iconic Pottery: What do cutting edge research into future space travel and the investigation of ancient ceramic pots have in common? More than you'd think.

Attic black-figure amphora (JPGM 88.AE.24, 530 - 520 B.C.) Herakles Attacking a Centaur.

Credit: J. Paul Getty Museum
Attic black-figure amphora (JPGM 88.AE.24, 530 - 520 B.C.) Herakles Attacking a Centaur.

Credit: J. Paul Getty Museum

Abstract:
Attic pottery is the iconic red and black figure-pottery produced in ancient Greece from the 6th to the 4th centuries B.C. Like the vessel shown above from the collection of the J. Paul Getty Museum, such pottery required immense precision to produce, and the means by which craftsman created these vessels is still not completely understood.

Deciphering the Elements of Iconic Pottery: What do cutting edge research into future space travel and the investigation of ancient ceramic pots have in common? More than you'd think.

Arlington, VA | Posted on March 28th, 2011

Now, thanks to funding from the National Science Foundation's (NSF)Chemistry and Materials Research in Cultural Heritage Science program, a collaborative group of California scientists from the Getty Conservation Institute (GCI), the Aerospace Corporation and the Department of Energy's SLAC National Accelerator Laboratory (SLAC) at Stanford is investigating the ancient technology used to create these works of art. From their study of the makeup of this iconic pottery, the researchers hope to further current conservation practice and future space travel.

What does the investigation of ancient ceramic pots have to do with cutting-edge research into future space travel? More than you'd think--it's hard to imagine a more dissimilar pairing, but the technology is actually quite transferrable.

Led by Karen Trentelman, a conservation scientist at the GCI, the grant team is working with conservators and curators from the J. Paul Getty Museum to attribute characteristic material "signatures" to known artists, which should aid the classification of unsigned works. The information will provide a deeper understanding of ancient pottery techniques and inform future conservation methods.

Of importance to aerospace industries, the effort will also create a deeper knowledge of iron-spinel chemistry, which is critical for advanced ceramics found in aerospace applications.

"Ceramic components are used all through space technology and space vehicles," says Mark Zurbuchen, a materials scientist with the Aerospace Corporation. "We need to continue to learn about interactions of components within these materials to help us better understand any real-world issues that may arise in actual space components."

One primary scientific technique the researchers are using is X-ray absorption near edge structure (XANES) spectroscopy, a tool for determining the iron oxidation states in the Attic pottery, which gives the pottery its iconic black and red coloring.

The researchers will also use X-ray absorption fine structure (EXAFS) analyses to provide information on the molecular structure of the iron minerals, and high resolution digital microscopy to study the surface of the works, among other analytical methods.

Aside from the technical aspects of the work, all of the scientists also are keenly interested in the sociological aspects of the work--that is, what impact did these potters have on their community?

For GCI scientist Marc Walton, who helped Trentelman develop the project, the effort is about understanding the society in which these pots were made.

"Using scientific methods, we want to look at the sociological context of ancient Greek workshops and potters and re-establish what we know about these workshops," said Walton.

At SLAC, which houses a high powered X-ray source driven by a particle accelerator called a synchrotron, staff scientist Apurva Mehta is working with the team to reveal nanoscale details across large regions of the pots. According to Mehta, the work will push the development of high-powered tools to probe many other materials, from biomaterials to the electrodes of lithium-ion batteries. His work will also help uncover answers to some important questions.

"There were several workshops making this pottery at the same time," says Mehta. "It's a fairly challenging technology--how was it invented? Did one workshop invent it and other workshops copy, modify and perfect it? Were they collaborating or competing with each other? I want to understand how technology really works in a society. How does a technology grow, how does it transfer from place to place, how does it change, what keeps it alive, why do some technologies eventually die away? Maybe this will help us understand how technologies are growing and changing today."

Using the information gleaned from the scientific studies of ancient vessels as a guide, the group also plans to reproduce the technology used by early artisans, ultimately firing small replicas.

The scientists hope to uncover whether works attributed to different artists used the same methods, or if techniques for creating the work differed amongst workshops producing pots at the same time. The researchers also hope to document how the process evolved over time.

The results are expected to impact a diverse range of fields in both art and science, including materials science, chemistry, archaeology, art history and art conservation.

"By partnering with SLAC and the Aerospace Corporation, we can look at the artwork in a new way," said Trentelman. "Scientific analysis gives us new insight into how and when the work was produced. In turn, our analysis can support hypotheses developed by art historians about ancient workshop practices, and also inform museum conservation efforts. Using nothing but clay dug from the ground, ancient craftsmen were able to create magnificent vessels with amazing detail. Something doesn't need to be complex to be sophisticated. If we can understand the technology with which these works of art were made, we can use the knowledge for a surprisingly wide variety of applications."

This research is funded by the NSF Chemistry and Materials Research in Cultural Heritage Science program, which supports collaborative research between academic, industrial and cultural heritage institutions. This program was developed out of a workshop jointly sponsored by NSF and the Andrew W. Mellon Foundation.

-- Melissa Abraham, J. Paul Getty Trust,

This Behind the Scenes article was provided to LiveScience in partnership with the National Science Foundation.

####

For more information, please click here

Contacts:
Melissa Abraham
J. Paul Getty Trust

Copyright © National Science Foundation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Aerospace/Space

Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024

Bridging light and electrons January 12th, 2024

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Manufacturing advances bring material back in vogue January 20th, 2023

Human Interest/Art

Drawing data in nanometer scale September 30th, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Graphene nanotubes revolutionize touch screen use for prosthetic hands August 3rd, 2021

JEOL Announces 2020 Microscopy Image Grand Prize Winners January 7th, 2021

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project