Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Twinkle, twinkle, quantum dot -- new particles can change colors and tag molecules

Researchers at Ohio State University have invented fluorescent nano-particles that change color to tag molecules under the microscope. This series of photos shows a particle changing from red to green -- and, at the 89-second mark, to yellow -- over the course of two minutes.

Credit: Image by Gang Ruan, courtesy of Ohio State University.
Researchers at Ohio State University have invented fluorescent nano-particles that change color to tag molecules under the microscope. This series of photos shows a particle changing from red to green -- and, at the 89-second mark, to yellow -- over the course of two minutes.

Credit: Image by Gang Ruan, courtesy of Ohio State University.

Abstract:
Engineers at Ohio State University have invented a new kind of nano-particle that shines in different colors to tag molecules in biomedical tests.

Twinkle, twinkle, quantum dot -- new particles can change colors and tag molecules

Columbus, OH | Posted on March 28th, 2011

These tiny plastic nano-particles are stuffed with even tinier bits of electronics called quantum dots. Like little traffic lights, the particles glow brightly in red, yellow, or green, so researchers can easily track molecules under a microscope.

This is the first time anyone has created fluorescent nano-particles that can change colors continuously.

Jessica Winter, assistant professor of chemical and biomolecular engineering and biomedical engineering, and research scientist Gang Ruan describe their patent-pending technology in the online edition of the journal Nano Letters.

Researchers routinely tag molecules with fluorescent materials in order to see them under the microscope. Unlike the more common fluorescent molecules, quantum dots shine very brightly, and could illuminate chemical reactions especially well, allowing researchers to see the inner workings of living cells.

A bottleneck to combating major diseases like cancer is the lack of molecular or cellular-level understanding of biological processes, the engineers explained.

"These new nanoparticles could be a great addition to the arsenal of biomedical engineers who are trying to find the roots of diseases," Ruan said.

"We can tailor these particles to tag particular molecules, and use the colors to track processes that we wouldn't otherwise be able to," he continued. "Also, this work could be groundbreaking for the field of nanotechnology as a whole, because it solves two seemingly irreconcilable problems with using quantum dots."

Quantum dots are pieces of semiconductor that measure only a few nanometers, or billionths of a meter, across. They are not visible to the naked eye, but when light shines on them, they absorb energy and begin to glow. That's what makes them good tags for molecules.

Due to quantum mechanical effects, quantum dots "twinkle" - they blink on and off at random moments. When many dots come together, however, their random blinking is less noticeable. So, large clusters of quantum dots appear to glow with a steady light.

Blinking has been a problem for researchers, because it breaks up the trajectory of a moving particle or tagged molecule that they are trying to follow. Yet, blinking is also beneficial, because when dots come together and the blinking disappears, researchers know for certain that tagged molecules have aggregated.

"Blinking is good and bad," Ruan explained. "But one day we realized that we could use the 'good' and avoid the 'bad' at the same time, by grouping a few quantum dots of different colors together inside a micelle."

A micelle is a nano-sized spherical container, and while micelles are useful for laboratory experiments, they are easily found in household detergents - soap forms micelles that capture oils in water. Ruan created micelles using polymers, with different combinations of red and green quantum dots inside them.

In tests, he confirmed that the micelles appeared to glow steadily. Those stuffed with only red quantum dots glowed red, and those stuffed with green glowed green. But those he stuffed with red and green dots alternated from red to green to yellow.

The color change happens when one or another dot blinks inside the micelle. When a red dot blinks off and the green blinks on, the micelle glows green. When the green blinks off and the red blinks on, the micelle glows red. If both are lit up, the micelle glows yellow.

The yellow color is due to our eyes' perception of light. The process is the same as when a red pixel and green pixel appear close together on a television or computer screen: our eyes see yellow.

Nobody can control when color changes happen inside individual micelles. But because the particles glow continuously, researchers can use them to track tagged molecules continuously. They can also monitor color changes to detect when molecules come together.

Winter and Ruan said that the particles could also be used in fluid mechanics research - specifically, micro-fluidics. Researchers who are developing tiny medical devices with fluid separation channels could use quantum dots to follow the fluid's path.

The same Ohio State research team is also developing magnetic particles to enhance medical imaging of cancer, and it may be possible to combine magnetism with the quantum dot technology for different kinds of imaging. But before the particles would be safe to use in the body, they would have to be made of biocompatible materials. Carbon-based nanomaterials are one possible option.

In the meantime, Winter and Ruan are going to continue developing the color-changing quantum dot particles for studies of cells and molecules under the microscope. They are also going to explore what happens when quantum dots of another color - for instance, blue - are added to the mix.

The university will look to license the technology for industry, and Winter and Ruan have created a Web site for the technologies they are developing: nanoforneuro.com.

This research was supported by the National Science Foundation, an endowment from the William G. Lowrie family to the Department of Chemical and Biomolecular Engineering, and the Center for Emergent Materials at Ohio State.

####

For more information, please click here

Contacts:
Jessica Winter


Gang Ruan


Written by
Pam Frost Gorder
(614) 292-9475

Copyright © Ohio State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Imaging

Cornell researchers create first self-assembled superconductor February 1st, 2016

New record in nanoelectronics at ultralow temperatures January 28th, 2016

LC.300 Series Nanopositioning Controller from nPoint January 28th, 2016

Researchers from the California NanoSystems Institute at UCLA have created a new technique that greatly enhances digital microscopy images January 27th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Scientists guide gold nanoparticles to form 'diamond' superlattices: DNA scaffolds cage and coax nanoparticles into position to form crystalline arrangements that mimic the atomic structure of diamond February 4th, 2016

Polar vortices observed in ferroelectric: New state of matter holds promise for ultracompact data storage and processing February 4th, 2016

Discoveries

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Joint Efforts by Iranian, Malaysian Scientists Produce Antibacterial Coatings for Isolated Areas February 4th, 2016

Announcements

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

COD Grad Begins Postdoctoral Fellow at Harvard University: Marsela Jorgolli's Passion for Physics Has Led to a Decade of Academic Research That Continues at Harvard University as a Postdoctoral Fellow February 2nd, 2016

Identifying Commercial Success Stories from the National Nanotechnology Initiative: National Nanotechnology Coordination Office and White House Office of Science and Technology Policy Issue a Request for Information on NNI-Supported Success Stories February 2nd, 2016

New research uses nanotechnology to prevent preterm birth: March of Dimes honors abstract on prematurity at SMFM Annual Meeting February 2nd, 2016

Quantum Dots/Rods

QD Vision Named to the 2015 Global Cleantech 100 Under the Radar List: Quantum Dot Leader Recognized for Clean Technology Innovation January 26th, 2016

Light-activated nanoparticles prove effective against antibiotic-resistant 'superbugs' January 19th, 2016

Nanoprobe development will enable scientists to uncover more DNA secrets January 17th, 2016

Researchers gauge quantum properties of nanotubes, essential for next-gen electronics: Imaging method allowed researchers to measure the nanotube quantum capacitance-a very unique property of an object from the nano-world January 8th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic