Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > RNA-Exporting Machine Deciphered at Berkeley Lab’s Advanced Light Source

The closest look yet at the molecular machinery that helps transport messenger RNA from a cell’s nucleus. In this image, Dbp5 (blue-grey) and Gle1 (yellow) are glued together by IP6 (colored spheres). (Image courtesy of Karsten Weis’ and James Berger’s labs)
The closest look yet at the molecular machinery that helps transport messenger RNA from a cell’s nucleus. In this image, Dbp5 (blue-grey) and Gle1 (yellow) are glued together by IP6 (colored spheres). (Image courtesy of Karsten Weis’ and James Berger’s labs)

Abstract:
A tiny motor tasked with one of nature's biggest jobs is now better understood. The molecular machinery that helps export messenger RNA from a cell's nucleus has been structurally mapped at the Advanced Light Source, a synchrotron located at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab).

RNA-Exporting Machine Deciphered at Berkeley Lab’s Advanced Light Source

Berkeley, CA | Posted on March 28th, 2011

Messenger RNA conveys genetic information from the nucleus to the cell's cytoplasm, where it guides the synthesis of proteins — the workhorses of biology. A key protein complex that helps to ferry messenger RNA from the nucleus has been poorly understood until now, however.

"Our research describes how this protein complex works at the molecular level," says Ben Montpetit, a postdoctoral researcher in Karsten Weis' lab at the University of California, Berkeley. Their research, a collaboration with biochemists Nathan Thomsen and James Berger, also of the University of California, Berkeley, is described in a paper published March 27 in an advance online edition of the journal Nature. Berger is also a faculty scientist in Berkeley Lab's Physical Biosciences Division.

The scientists studied a protein called Dbp5 that resides at the nuclear pore complex of fungi, plant, and animal cells. In these organisms, it reshapes messenger RNA as part of a chain of events required to send it from the nucleus.

But that's just the tip of the iceberg. Dbp5 is among a class of enzymes called DEAD-box ATPase that perform vital RNA-remodeling functions throughout nature, from humans and oak trees to fungi and single-celled bacteria. Understanding how it works in the cells of one species will illuminate how it works in distantly related species.

"DEAD-box proteins are conserved throughout life, so learning how it works in this case sheds light on its function everywhere in nature," says Montpetit.

The scientists conducted their research at beamline 8.3.1 of the Advanced Light Source, a national user facility that generates intense x-rays to probe the fundamental properties of substances. They used the synchrotron to resolve the structure of Dbp5 from yeast cells at key steps of the enzyme's job, such as when it's activated by another protein called Gle1 and when it binds with RNA. The structures were obtained at resolutions of between one and four angstroms (one angstrom is the diameter of a hydrogen atom).

The result is a time-lapse series of the protein's choreographed bid to remodel messenger RNA, with its twists and turns revealed at the highest resolution yet.

Among the team's most intriguing discoveries is the role of a molecule that is known to be involved in messenger RNA transport, but whose function was a mystery. They found that the molecule, called inositol hexakisphosphate, or IP6, tethers Gle1 to Dbp5. This stabilizes the two proteins long enough for Gle1 to kickstart Dbp5 into action.

"IP6 acts like a molecular glue," says Montpetit. "This is one of the first examples of an endogenous small molecule functioning to bring larger protein molecules together. With this knowledge, scientists can now consider how IP6 may be used to regulate mRNA export under various conditions, such as in response to stress."

Their research could also advance scientists' understanding of a rare but devastating family of diseases called lethal congenital contracture syndrome. The mutation that causes this disease is mapped to the genes that produce both Gle1 and IP6. Now, with Gle1's role in messenger RNA transport further elucidated, the door opens for the development of therapies that target its function.

The research was funded by the National Institutes of Health's National Institute of General Medical Sciences and the G. Harold and Leila Y. Mathers Foundation.

####

About Berkeley Lab
Lawrence Berkeley National Laboratory is a U.S. Department of Energy (DOE) national laboratory managed by the University of California for the DOE Office of Science. Berkeley Lab provides solutions to the world’s most urgent scientific challenges including sustainable energy, climate change, human health, and a better understanding of matter and force in the universe. It is a world leader in improving our lives through team science, advanced computing, and innovative technology. Visit our website.

For more information, please click here

Contacts:
Dan Krotz
510-486-4019

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Laboratories

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

News and information

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Govt.-Legislation/Regulation/Funding/Policy

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Molecular Machines

First 3-D observation of nanomachines working inside cells: Researchers headed by IRB Barcelona combine genetic engineering, super-resolution microscopy and biocomputation to allow them to see in 3-D the protein machinery inside living cells January 27th, 2017

Micro-bubbles make big impact: Research team develops new ultrasound-powered actuator to develop micro robot November 25th, 2016

Scientists come up with light-driven motors to power nanorobots of the future: Researchers from Russia and Ukraine propose a nanosized motor controlled by a laser with potential applications across the natural sciences and medicine November 11th, 2016

HKU chemists develop world's first light-seeking synthetic Nanorobot November 9th, 2016

Discoveries

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Announcements

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Nanobiotechnology

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Good vibrations help reveal molecular details: Rice University scientists combine disciplines to pinpoint small structures in unlabeled molecules February 15th, 2017

In-cell molecular sieve from protein crystal February 14th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project