Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Seeing below the surface: Engineers devise a new way to inspect advanced materials used to build airplanes

Abstract:
In recent years, many airplane manufacturers have started building their planes from advanced composite materials, which consist of high-strength fibers, such as carbon or glass, embedded in a plastic or metal matrix. Such materials are stronger and more lightweight than aluminum, but they are also more difficult to inspect for damage, because their surfaces usually don't reveal underlying problems.

Seeing below the surface: Engineers devise a new way to inspect advanced materials used to build airplanes

Cambridge, MA | Posted on March 27th, 2011

"With aluminum, if you hit it, there's a dent there. With a composite, oftentimes if you hit it, there's no surface damage, even though there may be internal damage," says Brian L. Wardle, associate professor of aeronautics and astronautics.

Wardle and his colleagues have devised a new way to detect that internal damage, using a simple handheld device and heat-sensitive camera. Their approach also requires engineering the composite materials to include carbon nanotubes, which generate the heat necessary for the test.

Their approach, described in the March 22 online edition of the journal Nanotechnology, could allow airlines to inspect their planes much more quickly, Wardle says. This project is part of a multiyear, aerospace-industry-funded effort to improve the mechanical properties of existing advanced aerospace-grade composites. The U.S. Air Force and Navy are also interested in the technology, and Wardle is working with them to develop it for use in their aircraft and vessels.

Uncovering damage

Advanced composite materials are commonly found not only in aircraft, but also cars, bridges and wind-turbine blades, Wardle says.

One method that inspectors now use to reveal damage in advanced composite materials is infrared thermography, which detects infrared radiation emitted when the surface is heated. In an advanced composite material, any cracks or delamination (separation of the layers that form the composite material) will redirect the flow of heat. That abnormal flow pattern can be seen with a heat-sensitive (thermographic) camera.

This is effective but cumbersome because it requires large heaters to be placed next to the surface, Wardle says. With his new approach, carbon nanotubes are incorporated into the composite material. When a small electric current is applied to the surface, the nanotubes heat up, which eliminates the need for any external heat source. The inspector can see the damage with a thermographic camera or goggles.

"It's a very clever way to utilize the properties of carbon nanotubes to deliver that thermal energy, from the inside out," says Douglas Adams, associate professor of mechanical engineering at Purdue University. Adams, who was not involved in the research, notes that two fundamental challenges remain: developing a practical way to manufacture large quantities of the new material, and ensuring that the addition of nanotubes does not detract from the material's primary function of withstanding heavy loads.

The new carbon nanotube hybrid materials that Wardle is developing have so far shown better mechanical properties, such as strength and toughness, than existing advanced composites.

####

For more information, please click here

Contacts:
Anne Trafton
MIT News Office
617.253.2700

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Related News Press

News and information

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

Nanotubes/Buckyballs/Fullerenes

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

McMaster researchers resolve a problem that has been holding back a technological revolution August 18th, 2016

'Second skin' protects soldiers from biological and chemical agents August 5th, 2016

Carbon nanotube 'stitches' make stronger, lighter composites: Method to reinforce these materials could help make airplane frames lighter, more damage-resistant August 4th, 2016

Discoveries

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

Materials/Metamaterials

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Industrial Nanotech, Inc. Provides Shareholder Update August 22nd, 2016

Announcements

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

Aerospace/Space

University of Puerto Rico and NASA back in the news XEI reports August 23rd, 2016

To Infinity and Beyond with Nanosatellites August 10th, 2016

Carbon nanotube 'stitches' make stronger, lighter composites: Method to reinforce these materials could help make airplane frames lighter, more damage-resistant August 4th, 2016

PPPL applies quantum theory and Einstein's special relativity to plasma physics issues July 31st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic