Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Therapeutic Nanoparticles Targeted to Radiation Treated Tumors

Abstract:
Radiation and chemotherapy are common partners in anticancer therapy for solid tumors, but too often, the combined side effects associated with each mode of therapy can limit how aggressively oncologists can treat their patients. Now, a team of investigators from Vanderbilt University and Washington University in St. Louis, has developed a nanoparticle that only targets irradiated tumors, offering the potential for reducing chemotherapy-associated toxicities and increasing the effectiveness of combination therapy.

Therapeutic Nanoparticles Targeted to Radiation Treated Tumors

Bethesda, MD | Posted on March 26th, 2011

Reporting its work in the Journal of Controlled Release, the team of investigators led by Zhoaozhong Han of Vanderbilt University describes how it used a technology known as "phase display" to identify a short peptide that binds specifically to irradiated tumor cells and used that peptide as an agent to target doxorubicin-containing nanoparticles to radiation-treated cells. Tests using cells grown in culture demonstrated that lipid-based nanoparticles decorated with this peptide do not bind to healthy cells, whether irradiated or not, nor to tumor cells that are not irradiated.

To test if this targeting peptide exhibits the same selectivity in a living animal, the investigators dosed mice bearing human tumors with one of two lipid nanoparticles loaded with the anticancer drug doxorubicin: one nanoparticle was decorated with the targeting peptide, while the "control" nanoparticle was coated with a random peptide that showed no binding preference for a particular type of cell. The researchers also attached a fluorescent probe to the nanoparticles in order to track their accumulation in the animals. Each animal had tumors growing on both sides of the body, with the tumors on only one side receiving radiation therapy.

When injected into the tumor-bearing mice, the targeted liposomes accumulated rapidly around the irradiated tumors but not around the tumors that were not irradiated. Similarly, the untargeted nanoparticles were largely excreted. More importantly, irradiated tumors treated with the targeted nanoparticle showed a marked increase in cell death and a substantial decrease in the number of blood vessels infusing those tumors. The researchers note that the use of anticancer nanoparticles targeted to irradiated tumors may make it possible to lower the dose of radiation used to treat tumors without negatively impacting therapeutic outcomes.

####

About The National Cancer Institute (NCI)
The NCI Alliance for Nanotechnology in Cancer is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat, and prevent cancer. Through its programs and initiatives, the Alliance is committed to building a community of researchers dedicated to using nanotechnology to advance the fight against cancer.

As part of the Center for Strategic Scientific Initiatives, the Alliance for Nanotechnology in Cancer works in concert with other NCI advanced technology initiatives to provide the scientific foundation and team science that is required to transform cancer research and care.

For more information, please click here

Contacts:
National Cancer Institute
Center for Strategic Scientific Initiatives
NCI Office of Cancer Nanotechnology Research (OCNR)
Building 31, Room 10A52
31 Center Drive, MSC 2580
Bethesda, MD 20892-2580
Telephone: (301) 451-8983

Copyright © The National Cancer Institute (NCI)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - "Tumor-targeted delivery of liposome-encapsulated doxorubicin by use of a peptide that selectively binds to irradiated tumors."

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project