Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New Technique Allows Noninvasive Tracking of Stem Cells in the Brain: Fluorescence from 'Quantum Dots' Can Be Monitored Through the Skull, Reports Neurosurgery

Abstract:
A new technique using "quantum dots" produced through nanotechnology is a promising approach to monitoring the effects of stem cell therapies for stroke and other types of brain damage, reports the April issue of Neurosurgery, official journal of the Congress of Neurological Surgeons. The journal is published by Lippincott Williams & Wilkins, a part of Wolters Kluwer Health.

New Technique Allows Noninvasive Tracking of Stem Cells in the Brain: Fluorescence from 'Quantum Dots' Can Be Monitored Through the Skull, Reports Neurosurgery

Posted on March 24th, 2011

The researchers report the successful use of "near-infrared fluorescence labeling" to track the behavior of injected stem cells in brain-injured rats. "The results open up new opportunities to develop non-invasive near-infrared fluorescence imaging…to track bone marrow stem cells transplanted into the human brain," write Dr. Taku Sugiyama and colleagues of Hokkaido University Graduate School of Medicine, Sapporo, Japan.

Quantum Dots Allow Monitoring of Stem Cell Therapy for Brain Injury
The researchers used bone marrow stem cells to treat induced brain injuries, similar to stroke, in rats. Before injection, the stem cells were labeled with "quantum dots"—a biocompatible, fluorescent semiconductor created using nanotechnology.

Other fluorescence techniques used to label stem cells have an important limitation—their relatively short wavelengths don't easily penetrate through bone and skin. The quantum dots emit near-infrared light, with much longer wavelengths that can easily penetrate tissues. This allowed the researchers to monitor the behavior of stem cells within the brain after transplantation using a computer-assisted 3-D imaging system.

Using this technology, Dr. Sugiyama and colleagues were able to detect near-infrared fluorescence from the stem cells as they moved to and incorporated themselves into the area around the injured area of the brain. Reflecting the stem cells' behavior, the fluorescence increased gradually, peaking at four weeks after injection.

The fluorescence remained detectable for up to eight weeks. The findings were confirmed by direct examination of the brains.

Stem cell transplantation is a potentially valuable treatment for stroke and other central nervous system disorders. The use of stem cells developed from the patient's own bone marrow is a particularly promising approach. For example, a study in the March issue of Neurosurgery reported that bone marrow stem cell transplantation was a "logistically feasible and safe" approach to treatment of severe traumatic brain injury in children.

However, some type of imaging system is needed to monitor the activity of stem cells as they travel to the injured area and develop into new brain cells. "Such techniques would be crucial to validate the therapeutic benefits of bone marrow stem cell transplantation for central nervous system disorders," Dr. Sugiyama and coauthors write.

Near-infrared fluorescence labeling using quantum dots appears to provide a noninvasive technique for monitoring the effects of stem cell transplantation in the rat brain. Further research will be needed to see if similar techniques can be developed and used in humans. If so, this technology would be an important part of experimental stem cell therapies to promote functional recovery of the brain after stroke or other types of injury.

About Neurosurgery

Neurosurgery, the Official Journal of the Congress of Neurological Surgeons, is your most complete window to the contemporary field of neurosurgery. Members of the Congress and non-member subscribers receive 3,000 pages per year packed with the very latest science, technology, and medicine, not to mention full-text online access to the world's most complete, up-to-the-minute neurosurgery resource. For professionals aware of the rapid pace of developments in the field, Neurosurgery is nothing short of indispensable.

####

About Lippincott Williams & Wilkins
Lippincott Williams & Wilkins (LWW) is a leading international publisher for healthcare professionals and students with nearly 300 periodicals and 1,500 books in more than 100 disciplines publishing under the LWW brand, as well as content-based sites and online corporate and customer services.

LWW is part of Wolters Kluwer Health, a leading provider of information and business intelligence for students, professionals and institutions in medicine, nursing, allied health and pharmacy. Major brands include traditional publishers of medical and drug reference tools, journals, and textbooks, such as Lippincott Williams & Wilkins and ; and electronic information providers, such as Ovid®, UpToDate®, Medi-Span®, Facts & Comparisons®, and ProVation® Medical.

Wolters Kluwer Health is part of Wolters Kluwer, a market-leading global information services company focused on professionals with annual revenues (2009) of €3.4 billion ($4.8 billion), approximately 19,300 employees worldwide and operations in over 40 countries across Europe, North America, Asia Pacific, and Latin America. Visit our website, YouTube or follow @Wolters_Kluwer on Twitter for more information about our market positions, customers, brands and organization.

For more information, please click here

Contacts:
Robert Dekker
Vice President, Communications
Wolters Kluwer Health
+1 (215) 521-8928


Connie Hughes
Director, Marketing Communications
Wolters Kluwer Health Medical Research
+1 (646) 674-6348

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Imaging

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Industry’s First Dedicated Cryo-DualBeam System Automates Preparation of Frozen, Biological Samples: New Thermo Scientific Aquilos FIB/SEM protects sample integrity and enhances productivity for cryo-electron tomography workflow August 8th, 2017

Nanomedicine

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Discoveries

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Announcements

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Quantum Dots/Rods

New approach on research and design for CQD catalysts in World Scientific NANO August 2nd, 2017

Coupling a nano-trumpet with a quantum dot enables precise position determination July 14th, 2017

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project