Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Sticking Power: New Adhesive Earns Patent, Could Find Place in Space

Abstract:
A recently patented adhesive made by Kansas State University researchers could become a staple in every astronaut's toolbox.

Sticking Power: New Adhesive Earns Patent, Could Find Place in Space

Manhattan, KS | Posted on March 24th, 2011

The patent, "pH dependent adhesive peptides," was issued to the Kansas State University Research Foundation, a nonprofit corporation responsible for managing technology transfer activities of K-State. The patent covers an adhesive made from peptides -- a compound containing two or more amino acids that link together -- that increases in strength as moisture is removed.

It was created by John Tomich, professor of biochemistry, and Xiuzhi "Susan" Sun, professor of grain science and industry. Assisting in the research was Takeo Iwamoto, an adjunct professor in biochemistry, and Xinchun Shen, a former postdoctoral researcher.

"The adhesive we ended up developing was one that formed nanoscale fibrils that become entangled, sort of like Velcro. It has all these little hooks that come together," Tomich said. "It's a mechanical type of adhesion, though, not a chemical type like most commercial adhesives."

Because of its unusual properties, applications will most likely be outside the commercial sector, Tomich said.

For example, unlike most adhesives that become brittle as moisture levels decrease, the K-State adhesive's bond only becomes stronger. Because of this, it could be useful in low-moisture environments like outer space, where astronauts could use it to reattach tiles to a space shuttle.
Conversely, its deterioration from water could also serve a purpose.

"It could be used as a timing device or as a moisture detection device," Tomich said. "There could be a circuit or something that when the moisture got to a certain level, the adhesive would fail and break the circuit, sounding an alarm."

The project began nearly a decade ago as Sun and a postdoctal researcher were studying the adhesive properties of soybean proteins. Needing an instrument to synthesize protein peptides, Sun contacted Tomich.

Serendipitously, Tomich's lab had developed a peptide some time ago that had cement-like properties. Tomich said he knew it was unusual but had set it aside to pursue other interests.

"When Dr. Sun and I resurrected this protein, we didn't use the whole thing -- just a segment of it," Tomich said. "We isolated a certain segment where the cells are highly attracted to each other and form these fibrils."

Since their collaboration Tomich has taken the same sequence and changed the way it was designed. The new peptide, he said, will have an eye toward gene therapy.

Sun's lab is trying to optimize the sequence against adhesion, as well as study how peptide sequences influence adhesion properties and surface energy.

"I continue studying protein structures and functional properties in terms of adhesion -- folding, aggregation, surface energy and gelling properties -- so we can rationally design and develop biobased adhesives using plant proteins," she said.

The research foundation is working with the National Institute for Strategic Technology Acquisition and Commercialization to license the patent.

####

For more information, please click here

Contacts:
John Tomich
785-532-5956

and
Xiuzhi "Susan" Sun
785-532-4077

Copyright © Kansas State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Discoveries

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Materials/Metamaterials

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

Smart materials used in ultrasound behave similar to water, Penn chemists report June 16th, 2017

Announcements

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Patents/IP/Tech Transfer/Licensing

Aculon Expands NanoProof® Product Line for Electronics Waterproofing Technology: With growing market opportunities Aculon Launches NanoProof® 8 with Push Through Connectivity™ and NanoProof® DAB a syringe application May 30th, 2017

NREL’s Advanced Atomic Layer Deposition Enables Lithium-Ion Battery Technology: May 10th, 2017

Forge Nano 2017: 1st Quarter Media Update April 20th, 2017

Making Batteries From Waste Glass Bottles: UCR researchers are turning glass bottles into high performance lithium-ion batteries for electric vehicles and personal electronics April 19th, 2017

Aerospace/Space

National Space Society and Cornell University's Cislunar Explorers Celebrate The Team's First Place Victory in NASA's Cube Quest Challenge June 15th, 2017

Space energy technology restored to make power stations more efficient: Scientists use graphene to reinvent abandoned heat energy converter technology March 7th, 2017

Applied Graphene Materials plc - Significant commercial progress in AGM’s three core sectors March 3rd, 2017

Triboelectric Nanogenerators Boost Mass Spectrometry Performance March 1st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project