Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Cheap catalyst made easy: CWRU researchers aim to bring fuel cells within reach

Abstract:
Catalysts made of carbon nanotubes dipped in a polymer solution equal the energy output and otherwise outperform platinum catalysts in fuel cells, a team of Case Western Reserve University engineers has found.

Cheap catalyst made easy: CWRU researchers aim to bring fuel cells within reach

Cleveland, OH | Posted on March 22nd, 2011

The researchers are certain that they'll be able to boost the power output and maintain the other advantages by matching the best nanotube layout and type of polymer.

But already they've proved the simple technique can knock down one of the major roadblocks to fuel cell use: cost.

Platinum, which represents at least a quarter of the cost of fuel cells, currently sells for about $65,000 per kilogram. These researchers say their activated carbon nanotubes cost about $100 per kilogram.

Their work is published in the online edition of Journal of the American Chemical Society at pubs.acs.org/doi/full/10.1021/ja1112904.

"This is a breakthrough," said Liming Dai, a professor of chemical engineering and the research team leader.

Dai and research associates Shuangyin Wang and Dingshan Yu found that by simply soaking carbon nanotubes in a water solution of the polymer polydiallyldimethylammoniumn chloride for a couple of hours, the polymer coats the nanotube surface and pulls an electron partially from the carbon, creating a net positive charge.

They placed the nanotubes on the cathode of an alkaline fuel cell. There, the charged material acts as a catalyst for the oxygen-reduction reaction that produces electricity while electrochemically combining hydrogen and oxygen.

In testing, the fuel cell produced as much power as an identical cell using a platinum catalyst.

But the activated nanotubes last longer and are more stable, the researchers said. Unlike platinum, the carbon-based catalyst: doesn't lose catalytic activity and, therefore, efficiency, over time; isn't fouled by carbon monooxide poising; and is free from the crossover effect with methanol. Methanol, a liquid fuel that's easier to store and transport than hydrogen, reduces activity of a platinum catalyst when the fuel crosses over from the anode to the cathode in a fuel cell.

The new process builds on the Dai lab's earlier work using nitrogen-doped carbon nanotubes as a catalyst. In that process, nitrogen, which was chemically bonded to the carbon, pulled electron partially from the carbon to create a charge. Testing showed the doped tubes tripled the energy output of platinum.

Dai said the new process is far simpler and cheaper than using nitrogen-doped carbon nanotubes and he's confident his lab will increase the energy output as well. "We have not optimized the system yet."

####

For more information, please click here

Contacts:
Kevin Mayhood

216-368-4442

Copyright © Case Western Reserve University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Smart hydrogel coating creates 'stick-slip' control of capillary action July 27th, 2015

Industrial Nanotech, Inc. Provides Update on PCAOB Audited Financials July 27th, 2015

Global Corrosion Resistant Nano Coatings Market To 2015: Acute Market Reports July 27th, 2015

Nanotubes/Buckyballs/Fullerenes

UT Dallas nanotechnology research leads to super-elastic conducting fibers July 24th, 2015

Nano-C Receives EPA Approvals for Single Walled Carbon Nanotubes July 21st, 2015

Global Carbon Nanotube Industry 2015 Market Research Report July 20th, 2015

Old astronomic riddle on the way to be solved July 16th, 2015

Discoveries

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Researchers predict material with record-setting melting point July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Announcements

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Industrial Nanotech, Inc. Provides Update on PCAOB Audited Financials July 27th, 2015

Global Corrosion Resistant Nano Coatings Market To 2015: Acute Market Reports July 27th, 2015

Fuel Cells

Ultra-thin hollow nanocages could reduce platinum use in fuel cell electrodes July 24th, 2015

Nanowires give 'solar fuel cell' efficiency a tenfold boost: Eindhoven researchers make important step towards a solar cell that generates hydrogen July 17th, 2015

Molecular fuel cell catalysts hold promise for efficient energy storage July 16th, 2015

Clay sheets stack to form proton conductors: Model system demonstrates a new material property emerging from the assembly of nanoscale building blocks July 13th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project