Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Cheap catalyst made easy: CWRU researchers aim to bring fuel cells within reach

Abstract:
Catalysts made of carbon nanotubes dipped in a polymer solution equal the energy output and otherwise outperform platinum catalysts in fuel cells, a team of Case Western Reserve University engineers has found.

Cheap catalyst made easy: CWRU researchers aim to bring fuel cells within reach

Cleveland, OH | Posted on March 22nd, 2011

The researchers are certain that they'll be able to boost the power output and maintain the other advantages by matching the best nanotube layout and type of polymer.

But already they've proved the simple technique can knock down one of the major roadblocks to fuel cell use: cost.

Platinum, which represents at least a quarter of the cost of fuel cells, currently sells for about $65,000 per kilogram. These researchers say their activated carbon nanotubes cost about $100 per kilogram.

Their work is published in the online edition of Journal of the American Chemical Society at pubs.acs.org/doi/full/10.1021/ja1112904.

"This is a breakthrough," said Liming Dai, a professor of chemical engineering and the research team leader.

Dai and research associates Shuangyin Wang and Dingshan Yu found that by simply soaking carbon nanotubes in a water solution of the polymer polydiallyldimethylammoniumn chloride for a couple of hours, the polymer coats the nanotube surface and pulls an electron partially from the carbon, creating a net positive charge.

They placed the nanotubes on the cathode of an alkaline fuel cell. There, the charged material acts as a catalyst for the oxygen-reduction reaction that produces electricity while electrochemically combining hydrogen and oxygen.

In testing, the fuel cell produced as much power as an identical cell using a platinum catalyst.

But the activated nanotubes last longer and are more stable, the researchers said. Unlike platinum, the carbon-based catalyst: doesn't lose catalytic activity and, therefore, efficiency, over time; isn't fouled by carbon monooxide poising; and is free from the crossover effect with methanol. Methanol, a liquid fuel that's easier to store and transport than hydrogen, reduces activity of a platinum catalyst when the fuel crosses over from the anode to the cathode in a fuel cell.

The new process builds on the Dai lab's earlier work using nitrogen-doped carbon nanotubes as a catalyst. In that process, nitrogen, which was chemically bonded to the carbon, pulled electron partially from the carbon to create a charge. Testing showed the doped tubes tripled the energy output of platinum.

Dai said the new process is far simpler and cheaper than using nitrogen-doped carbon nanotubes and he's confident his lab will increase the energy output as well. "We have not optimized the system yet."

####

For more information, please click here

Contacts:
Kevin Mayhood

216-368-4442

Copyright © Case Western Reserve University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

JPK talks with Dr Frank Lafont, Director of the BioImaging Center Lille (BICeL) about the use of the NanoWizardŽ AFM together with fluorescence microscopy in the study of living cells June 19th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Executives Explore Key Megatrends and Innovations in MEMS, Sensors, Imaging Tech at SEMI-MSIG European Summits: Speakers to share developments in smart automotive, smart cities, smart industrial, biomedical, consumer and IoT, September 19-21, 2018 in Grenoble, France June 19th, 2018

Nanotubes/Buckyballs/Fullerenes/Nanorods

Nano-saturn: Supramolecular complex formation: Anthracene macrocycle and C60 fullerene June 8th, 2018

Unzipping graphene nanotubes into nanoribbons: New study shows elegant mathematical solution to understand how the flow of electrons changes when carbon nanotubes turn into zigzag nanoribbons June 6th, 2018

Making carbon nanotubes as usable as common plastics: Researchers discover that cresols disperse carbon nanotubes at unprecedentedly high concentrations May 15th, 2018

'Exceptional' research points way toward quantum discoveries: Rice University scientists make tunable light-matter couplings in nanotube films April 30th, 2018

Discoveries

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Announcements

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

JPK talks with Dr Frank Lafont, Director of the BioImaging Center Lille (BICeL) about the use of the NanoWizardŽ AFM together with fluorescence microscopy in the study of living cells June 19th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Executives Explore Key Megatrends and Innovations in MEMS, Sensors, Imaging Tech at SEMI-MSIG European Summits: Speakers to share developments in smart automotive, smart cities, smart industrial, biomedical, consumer and IoT, September 19-21, 2018 in Grenoble, France June 19th, 2018

Fuel Cells

Harvesting clean hydrogen fuel through artificial photosynthesis May 3rd, 2018

A new way to find better battery materials: Design principles could point to better electrolytes for next-generation lithium batteries March 29th, 2018

Rice sleuths find metal in 'metal-free' catalysts: Study of graphene catalysts finds trace of manganese, suggests better ultrathin fuel-cell components February 26th, 2018

Study boosts hope for cheaper fuel cells: Rice University researchers show how to optimize nanomaterials for fuel-cell cathodes January 6th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project