Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > CEA-Leti Forms Common Lab with IPDiA to Focus on 3D-Integration Technologies for Passive Components on Silicon: Collaboration Will Open Door for New Applications in LED, Healthcare and Aerospace That Require Extreme Miniaturization

Abstract:
CEA-Leti and IPDiA have formed a common lab to capitalize on their complementary expertise in miniaturization and 3D integration on silicon.

CEA-Leti Forms Common Lab with IPDiA to Focus on 3D-Integration Technologies for Passive Components on Silicon: Collaboration Will Open Door for New Applications in LED, Healthcare and Aerospace That Require Extreme Miniaturization

Grenoble, France | Posted on March 21st, 2011

The common lab is dedicated to developing new 3D-integration technologies for passive electronics components on silicon and will open the door to new applications in promising markets such as LED lighting, healthcare and aerospace that require extreme miniaturization. The partnership also will pave the way to improved miniaturization of passive components such as resistors, capacitors and inductors.

Specifically, the common lab is designed to develop:
· Very high-end passive components on silicon that will resist harsh environments
· Functional sub-mounts for lighting components
· Innovative assembly technologies allowing ultra-miniaturization of future products

IPDiA was founded in 2009 to commercialize innovative 3D technologies for integrating passive components. The company's two axes of focus are integrated devices for high brightness LEDs and integrated passive devices for new medical, industrial, aerospace and defense markets.

CEA-Leti's expertise in 3D technologies will allow IPDiA to go beyond the third generation of Passive Integration Connecting Substrate (PICS) components (250nF/mm²), which are being produced at IPDiA's Caen site, and pursue the development of a future generation of PICS components (1µF/mm², then 2µF/mm²) and their assembly.

These products are designed, developed and manufactured by IPDiA in its production unit.

"The technologies to be developed in the common lab are one of the corner stones for industrial development of IPDiA, and our competencies in developing passive components in silicon will allow us to put a real industrial and independent offer in place," said Franck Murray, CEO of IPDIA. "This partnership is also the result of a great human adventure, a common work between teams from various backgrounds generating creativity and new ideas."

"This collaboration is fully in line with our strategy, and more of our technologies will go to market through this cooperation with a new innovative partner. Through very complementary competencies, IPDiA and Leti will work at the forefront of integrated passive components into silicon interposers," said Leti CEO Laurent Malier. "Moreover, this cooperation is a solid example of Leti's commitment to support the emergence of jobs and companies, as we have worked with IPDiA from their first day."

####

About CEA-Leti
CEA is a French research and technology organization, with activities in four main areas: energy, information technologies, healthcare technologies and defence and security. Within CEA, the Laboratory for Electronics & Information Technology (CEA-Leti) works with companies in order to increase their competitiveness through technological innovation and transfers. CEA-Leti is focused on micro and nanotechnologies and their applications, from wireless devices and systems, to biology and healthcare or photonics. Nanoelectronics and microsystems (MEMS) are at the core of its activities. As a major player in MINATEC campus, CEA-Leti operates 8,000-m² state-of-the-art clean rooms, on 24/7 mode, on 200mm and 300mm wafer standards. With 1,400 employees, CEA-Leti trains more than 190 Ph.D. students and hosts 200 assignees from partner companies. Strongly committed to the creation of value for the industry, CEA-Leti puts a strong emphasis on intellectual property and owns more than 1,700 patent families.
Visit www.leti.fr.

About IPDiA
Founded in June 2009, IPDiA is a leader in passive-components integration on silicon with a global offer for miniaturization that features high-level technological and economic performance. The company is mainly focused on the following fields: healthcare, lighting, communication, defense, aerospace, industry and automotive.
The company is based in Caen, France.

For more information, visit: www.ipdia.com.

For more information, please click here

Contacts:
EA-Leti
Thierry Bosc
+33 4 38 78 31 95


Agency
Amélie Ravier
+33 1 58 18 59 30


IPDiA
Laetitia Omnes
+33 2 31 53 54 06

Copyright © CEA-Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists synthesize nanoparticle-antioxidants to treat strokes and spinal cord injuries January 16th, 2018

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

Display technology/LEDs/SS Lighting/OLEDs

Chinese market opens up for Carbodeon nanodiamonds: Carbodeon granted Chinese Patent for Nanodiamond-containing Thermoplastic Thermal Compounds December 4th, 2017

Graphene oxide making any material suitable to create biosensors: Scientists from Tomsk Polytechnic University have developed a new tool for biomedical research focused on single-cell investigation November 27th, 2017

The next generation of power electronics? Gallium nitride doped with beryllium: How to cut down energy loss in power electronics? The right kind of doping November 9th, 2017

Atomic scale Moiré patterns to push electronic boundaries? November 1st, 2017

Chip Technology

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

New oxide and semiconductor combination builds new device potential: Researchers integrated oxide two-dimensional electron gases with gallium arsenide and paved the way toward new opto-electrical devices January 10th, 2018

STMicroelectronics Selects GLOBALFOUNDRIES 22FDX® to Extend Its FD-SOI Platform and Technology Leadership : GF’s FDX technology will enable ST to deliver high-performance, low-power products for next-generation consumer and industrial applications January 9th, 2018

Touchy nanotubes work better when clean: Rice, Swansea scientists show that decontaminating nanotubes can simplify nanoscale devices January 4th, 2018

Nanomedicine

Scientists synthesize nanoparticle-antioxidants to treat strokes and spinal cord injuries January 16th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

'Decorated' stem cells could offer targeted heart repair January 11th, 2018

Rice University lab modifies nanoscale virus to deliver peptide drugs to cells, tissues January 8th, 2018

Announcements

Scientists synthesize nanoparticle-antioxidants to treat strokes and spinal cord injuries January 16th, 2018

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

Aerospace/Space

Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018

Teachers in Space, Inc. wins Dream Project contest January 9th, 2018

CubeSat Structures Competition Opens Space Design to Students of the World December 16th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

Alliances/Trade associations/Partnerships/Distributorships

New era in high field superconducting magnets – opening new frontiers in science, nanotechnology and materials discovery January 9th, 2018

Leti Field Trials Demonstrate New Multicarrier Waveform for Rural, Maritime Broadband Radio: Field Trial in Orkney Islands Used New Filtered Multicarrier Waveform at 700MHz Band with Flexible Bandwidth Usage (Fragmented and Continuous Spectrum) December 18th, 2017

A new product to help combat mouldy walls, thanks to technology developed at the ICN2 December 14th, 2017

JPK Instruments announce partnership with Swiss company, Cytosurge AG. The partnership makes Cytosurge’s FluidFM® technology available on the JPK NanoWizard® AFM platform December 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project