Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > An X-ray laser captures the structures of life

An X-ray laser captures the 
structures of life
An X-ray laser captures the structures of life

Abstract:
Two studies published recently in Nature demonstrate how the unique capabilities of the world's first hard X-ray free-electron laser—the Linac Coherent Light Source, located at DOE's SLAC National Accelerator Laboratory—could revolutionize the study of life.

An X-ray laser captures the structures of life

Menlo Park, CA | Posted on March 21st, 2011

In one study, an international research team used the LCLS to demonstrate a shortcut for determining the 3-D structures of proteins.

The laser's brilliant pulses of X-ray light pulled structural data from tiny
protein nanocrystals, avoiding the need to use large protein crystals
that can be difficult or impossible to prepare. This process could lop
years off the structural analysis of some proteins and allow scientists
to decipher tens of thousands of others that are out of reach
today, including many involved in infectious disease.

In a separate paper, the same team reported making the first single-shot images of intact viruses, paving the way for snapshots and movies of molecules, viruses and live microbes in action.

Since the publication of these papers, members of the research team have returned to SLAC to continue their studies of proteins involved in photosynthesis, parasitic disease and other important life processes. Using the Coherent X-ray Imaging instrument (CXI)—the fourth instrument to become operational since the LCLS opened for research in 2009—the researchers shined highly energetic "hard" X-rays at the photosynthetic protein complex Photosystem I and an enzyme that breaks down proteins, extracted from the parasite that causes African sleeping sickness.

Though the results of these more recent studies won't be known until extensive analysis of the data has been completed, the researchers were extremely excited to see fine, crisply detailed protein structures at near atomic-scale resolution.

"It's going very well," said SLAC researcher Marvin Seibert, grinning. "The fireworks are back. It's always fun."

####

For more information, please click here

Copyright © DOE

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Imaging

Publication on Atomic Force Microscopy based nanoscale IR Spectroscopy (AFM-IR) persists as a 2015 top downloaded paper July 29th, 2015

News and information

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Flexible Future of Point-of-Care Disease Diagnostic July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Laboratories

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

New computer model could explain how simple molecules took first step toward life: Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules July 28th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Pakistani Students Who Survived Terror Attack to Attend Weeklong “NanoDiscovery Institute” at SUNY Poly CNSE in Albany July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

New computer model could explain how simple molecules took first step toward life: Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

Announcements

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Flexible Future of Point-of-Care Disease Diagnostic July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Tools

Publication on Atomic Force Microscopy based nanoscale IR Spectroscopy (AFM-IR) persists as a 2015 top downloaded paper July 29th, 2015

Nanometrics Announces Upcoming Investor Events July 28th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project