Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > 3D printing method advances electrically small antenna design

Optical image of an antenna during the printing process.
Optical image of an antenna during the printing process.

Abstract:
While most electronic components benefit from decreased size, antennas-whether in a cell phone or on an aircraft-suffer limitations in gain, efficiency, system range, and bandwidth when their size is reduced below a quarter-wavelength.

3D printing method advances electrically small antenna design

Champaign, IL | Posted on March 20th, 2011

"Recent attention has been directed toward producing antennas by screen-printing, inkjet printing, and liquid metal-filled microfluidics in simple motifs, such as dipoles and loops," explained Jennifer T. Bernhard, a professor of electrical and computer engineering at Illinois. "However, these fabrication techniques are limited in both spatial resolution and dimensionality, yielding planar antennas that occupy a large area relative to the achieved performance."

"Omnidirectional printing of metallic nanoparticle inks offers an attractive alternative for meeting the demanding form factors of 3D electrically small antennas (ESAs)," stated Jennifer A. Lewis, the Hans Thurnauer Professor of Materials Science and Engineering and director of the Frederick Seitz Materials Research Laboratory at Illinois.

"To our knowledge, this is the first demonstration of 3D printed antennas on curvilinear surfaces," Lewis stated. The research findings and fabrication methods developed by Bernhard, Lewis, and their colleagues are featured in the cover article,"Illinois Calling" of the March 18 issue of Advanced Materials ("Conformal Printing of Electrically Small Antennas on Three-Dimensional Surfaces").

According to Bernhard, these antennas are electrically small relative to a wavelength (typically a twelfth of a wavelength or less) and exhibit performance metrics that are an order of magnitude better than those realized by monopole antenna designs.

"There has been a long-standing problem of minimizing the ratio of energy stored to energy radiated-the Q-of an ESA," Bernhard explained. "By printing directly on the hemispherical substrate, we have a highly versatile single-mode antenna with a Q that very closely approaches the fundamental limit dictated by physics (known as the Chu limit).

Conformal printing allows the antenna's meander lines to be printed on the outside or inside of hemispherical substrates, adding to its flexibility.

"Unlike planar substrates, the surface normal is constantly changing on curvilinear surfaces, which presents added fabrication challenges," Lewis noted. To conformally print features on hemispherical substrates, the silver ink must strongly wet the surface to facilitate patterning even when the deposition nozzle (100 μm diameter) is perpendicular to the printing surface.

To fabricate an antenna that can withstand mechanical handling, for example, the silver nanoparticle ink is printed on the interior surface of glass hemispheres. Other non-spherical ESAs can be designed and printed using a similar approach to enable integration of low Q antennas on, for example, the inside of a cell phone case or the wing of an unmanned aerial vehicle. The antenna's operating frequency is determined primarily by the printed conductor cross-section and the spacing (or pitch) between meander lines within each arm.

According to the researchers, their design can be rapidly adapted to new specifications, including other operating frequencies, device sizes, or encapsulated designs that offer enhanced mechanical robustness.

"This conformal printing technique can be extended other potential applications, including flexible, implantable, and wearable antennas, electronics, and sensors," Lewis said.

####

For more information, please click here

Contacts:
Jennifer T. Bernhard
Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign
217/333-0293

Jennifer A. Lewis
Frederick Seitz Materials Research Laboratory
217/244-4973

If you have any questions about the College of Engineering, or other story ideas, contact
Rick Kubetz
writer/editor
Engineering Communications Office
University of Illinois at Urbana-Champaign
217/244-7716

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New exotic phenomena seen in photonic crystals: Researchers observe, for the first time, topological effects unique to an “open” system January 12th, 2018

'Decorated' stem cells could offer targeted heart repair January 11th, 2018

Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018

IBM Breaks Records to Top U.S. Patent List for 25th Consecutive Year: IBM Inventors Receive Record 9,043 Patents in 2017 in Areas such as Artificial Intelligence, Cloud, Blockchain, Cybersecurity and Quantum Computing January 11th, 2018

3D printing/Additive-manufacturing

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

3-D-printed device builds better nanofibers: Printed nozzle system could make uniform, versatile fibers at much lower cost. October 30th, 2017

3-D-printed jars in ball-milling experiments June 29th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Sensors

NRL improves optical efficiency in nanophotonic devices January 4th, 2018

'Quantum material' has shark-like ability to detect small electrical signals December 20th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

Nanoelectronics

Viewing atomic structures of dopant atoms in 3-D relating to electrical activity in a semiconductor December 28th, 2017

Electronically-smooth '3-D graphene': A bright future for trisodium bismuthide: Electronically-smooth nature of trisodium bismuthide makes it a viable alternative to graphene/h-BN December 22nd, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

GLOBALFOUNDRIES, Fudan Team to Deliver Next Generation Dual Interface Smart Card November 14th, 2017

Discoveries

New exotic phenomena seen in photonic crystals: Researchers observe, for the first time, topological effects unique to an “open” system January 12th, 2018

'Decorated' stem cells could offer targeted heart repair January 11th, 2018

Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018

New oxide and semiconductor combination builds new device potential: Researchers integrated oxide two-dimensional electron gases with gallium arsenide and paved the way toward new opto-electrical devices January 10th, 2018

Printing/Lithography/Inkjet/Inks/Bio-printing

Printing Flexible Graphene Supercapacitors December 1st, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project