Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanotube-Based Filter Cleans Drinking Water - Water Treatment: New filtration system removes bacteria and viruses

Environ. Sci. Technol.
MICROBE ZAPPER When the carbon nanotube-based filter catches bacteria (left), it can also kill them through electrolysis (right).
Environ. Sci. Technol.
MICROBE ZAPPER When the carbon nanotube-based filter catches bacteria (left), it can also kill them through electrolysis (right).

Abstract:
For 1 billion people in developing countries, finding clean drinking water is a daily challenge. Now researchers demonstrate a carbon nanotube-based filtration and electrolysis system that can completely remove or inactivate viruses and bacteria from water (Environ. Sci. Technol., DOI: 10.1021/es2000062). Coauthor Chad Vecitis of Harvard University thinks this technology could lead to inexpensive commercial water filters, potentially saving millions every year from diseases and death caused by waterborne pathogens.

Nanotube-Based Filter Cleans Drinking Water - Water Treatment: New filtration system removes bacteria and viruses

Washington, DC | Posted on March 17th, 2011

The key filter in the device is a porous film of multi-walled carbon nanotubes. Compared to other carbon-based filtration techniques, nanotubes have several advantages, Vecitis says, including large surface areas, inherent antimicrobial activity, and resistance to corrosion. By running a small current through the nanotubes and inserting another electrode into the water, the device also can electrolyze water to produce oxygen to kill pathogens.

Vecitis and his colleagues tested their device by pumping suspensions of the bacteria Escherichia coli or of MS2 bacteriophages in a saline solution through the filter assembly. They ran these tests with and without electrolysis.

After one pass through the filter, their device successfully removed all bacteria from the solution, and 99.99% of the viruses. With electrolysis, no viable bacteriophages remained. Since a single virus particle can sicken a person, the researchers consider electrolysis an important step.

Because the electrolysis reaction requires low voltages, portable solar panels could power the device, Vecitis says. To adapt the technology to daily use, he says, the next step would be to create a more-compact device with the capacity to filter 2 to 3 L of water per day, the minimum people need to survive.

####

For more information, please click here

Copyright © ACS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Discoveries

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Announcements

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Water

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Wood filter removes toxic dye from water April 21st, 2017

Shedding light on the absorption of light by titanium dioxide April 14th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project