Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > 'Pruned' microchips are faster, smaller, more energy-efficient: Experts produce leaner, greener microchips by trimming away little-used circuits

Abstract:
Computing experts from the United States, Switzerland and Singapore have unveiled a technique for doubling the efficiency of computer chips by trimming away rarely used circuits. While these "pruned" microchips make a few calculation errors, tests show that cleverly managing the errors can yield chips that are two times faster, consume about half the energy and take up about half the space of traditional microchips.

'Pruned' microchips are faster, smaller, more energy-efficient: Experts produce leaner, greener microchips by trimming away little-used circuits

Grenoble, France | Posted on March 16th, 2011

An international team of computing experts from the United States, Switzerland and Singapore has created a breakthrough technique for doubling the efficiency of computer chips simply by trimming away the portions that are rarely used.

"I believe this is the first time someone has taken an integrated circuit and said, 'Let's get rid of the part that we don't need,'" said principal investigator Krishna Palem, the Ken and Audrey Kennedy Professor of Computing at Rice University in Houston, who holds a joint appointment at Nanyang Technological University (NTU) in Singapore. "What we've shown is that we can boost performance and cut energy use simultaneously if we prune the unnecessary portions of the digital application-specific integrated circuits that are typically used in hearing aids, cameras and other multimedia devices."

Palem, who heads the Rice-NTU Institute for Sustainable and Applied Infodynamics (ISAID), and his collaborators at Switzerland's Center for Electronics and Microtechnology (CSEM) are unveiling the new pruning technique this week in Grenoble, France, at DATE11, the premier European conference on the design, automation and testing of microelectronics.

Pruning is the latest example of "inexact hardware," the key approach that ISAID is exploring with CSEM to produce the next generation of energy-stingy microchips.

The probabilistic concept is deceptively simple: Slash power demands on microprocessors by allowing them to make mistakes. By cleverly managing the probability of errors and by limiting which calculations produce errors, the designers have found they can simultaneously cut energy demands and boost performance.

At DATE11, Rice graduate student Avinash Lingamneni will describe "probabilistic pruning," the novel technique the team created for trimming away the least-used portions of integrated circuits. Lingamneni used the method to create prototype chips at CSEM. The test prototypes contain both traditional circuits and pruned circuits that were produced side by side on the same silicon chip.

"Our initial tests indicate that the pruned circuits will be at least two times faster, consume about half the energy and take up about half the space of the traditional circuits," Lingamneni said. He said he hopes that the system performs even better in the final tests, which are still under way.

Christian Enz, who leads the CSEM arm of the collaboration and is a co-author of the DATE study, said, "The cost for these gains is an 8 percent error magnitude, and to put that into context, we know that many perceptive types of tasks found in vision or hearing applications can easily tolerate error magnitudes of up to 10 percent."

Palem said the next hurdle for "pruning" will be to use the technique to create a complete prototype chip for a specific application. Lingamneni said he hopes to start designing just such a chip for a hearing aid this summer.

"Based on what we already know, we believe probabilistic computing can produce application-specific integrated circuits for hearing aids that can run four to five times longer on a set of batteries than current hearing aids," Palem said. "The collaboration between ISAID and CSEM was key to achieving these results.

####

About Rice University
Located on a 285-acre forested campus in Houston, Texas, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its “unconventional wisdom." With 3,485 undergraduates and 2,275 graduate students, Rice's undergraduate student-to-faculty ratio is less than 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for "best value" among private universities by Kiplinger's Personal Finance.

For more information, please click here

Contacts:
Jessica Stark
713-348-6777


Jade Boyd
713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Chip Technology

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

Research partnerships

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project