Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nanoscale whiskers from sea creatures could grow human muscle tissue

Abstract:
Minute whiskers of nanoscale dimensions taken from sea creatures could hold the key to creating working human muscle tissue, University of Manchester researchers have discovered.

Scientists have found that cellulose from tunicates, commonly known as sea squirts, can influence the behaviour of skeletal muscle cells in the laboratory.

Nanoscale whiskers from sea creatures could grow human muscle tissue

Manchester, UK | Posted on March 14th, 2011

These nanostructures are several thousand times smaller than muscle cells and are the smallest physical feature found to cause cell alignment.

Alignment is important since a lot of tissue in the body, including muscle, contains aligned fibres which give it strength and stiffness.

Cellulose is a polysaccharide - a long chain of sugars joined together - usually found in plants and is the main component of paper and certain textiles such as cotton.

It is already being used for a number of different medical applications, including wound dressings, but this is the first time it has been proposed for creating skeletal muscle tissue.

Tunicates grow on rocks and man-made structures in coastal waters around the world.

Cellulose extracted from tunicates is particularly well suited for making muscle tissue due to its unique properties.

University of Manchester academics Dr Stephen Eichhorn and Dr Julie Gough, working with PhD student James Dugan, chemically extract the cellulose in the form of nanowhiskers. One nanometre is one billionth of a metre and these minute whiskers are only 10s of nanometres wide - far thinner than a human hair.

When aligned and parallel to each other, they cause rapid muscle cell alignment and fusion.

The method is both simple and relatively quick, which could lead to doctors and scientists having the ability to create the normal aligned architecture of skeletal muscle tissue.

This tissue could be used to help repair existing muscle or even grow muscle from scratch.

Creating artificial tissue which can be used to replace damaged or diseased human muscles could revolutionise healthcare, and be of huge benefit to millions of people all over the world.

Dr Eichhorn thinks the cellulose extracted from the creatures could lead to a significant medical advancement. He added: "Although it is quite a detailed chemical process, the potential applications are very interesting.

"Cellulose is being looked at very closely around the world because of its unique properties, and because it is a renewable resource, but this is the first time that it has been used for skeletal muscle tissue engineering applications.

"There is potential for muscle precision engineering, but also for other architecturally aligned structures such as ligaments and nerves."

PhD student James Dugan has become the first UK student to win the American Chemical Society's Cellulose and Renewable Material Division award for his work on nanowhiskers.

####

For more information, please click here

Contacts:
Daniel Cochlin
Media Relations Officer
The University of Manchester
0161 275 8387



Suzanne Ross
+44 (0) 161 275 8384

Copyright © The University of Manchester

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Nanomedicine

Nanoscale assembly line August 29th, 2014

Copper shines as flexible conductor August 29th, 2014

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

PetLife Comments on CNN Story on Scorpion Venom Health Benefits August 27th, 2014

Discoveries

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

Copper shines as flexible conductor August 29th, 2014

Announcements

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE