Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Delivering a Potent Cancer Drug in Its Prodrug Form with Nanoparticles Can Prevent Side Effects: The new nanoparticle also treats tumors more effectively than the unadorned drug, in mice

Abstract:
Researchers at MIT and Brigham and Women's Hospital have shown that they can deliver the cancer drug cisplatin much more effectively and safely in the form of a prodrug that has been encapsulated in a nanoparticle targeted to prostate tumor cells.

Delivering a Potent Cancer Drug in Its Prodrug Form with Nanoparticles Can Prevent Side Effects: The new nanoparticle also treats tumors more effectively than the unadorned drug, in mice

Boston, MA | Posted on March 14th, 2011

Using the new particles, the researchers were able to successfully shrink tumors in mice, using only one-third the amount of conventional cisplatin needed to achieve the same effect. That could help reduce cisplatin's potentially severe side effects, which include kidney damage and nerve damage.

In 2008, the researchers showed that the nanoparticles worked in cancer cells grown in a lab dish. Now that the particles have shown promise in animals, the team hopes to move on to human tests.

"At each stage, it's possible there will be new roadblocks that will come up, but you just keep trying," says Stephen Lippard, the Arthur Amos Noyes Professor of Chemistry and a senior author of the paper, which appears in the Proceedings of the National Academy of Sciences the week of Jan. 10.

Omid Farokhzad, Associate Professor at Harvard Medical School and director of the Laboratory of Nanomedicine and Biomaterials at Brigham and Women's Hospital, is also a senior author of the paper. Shanta Dhar, a postdoctoral associate in Lippard's lab, and Nagesh Kolishetti, a postdoctoral associate in Farokhzad's lab, are co-lead authors.

Better delivery

Cisplatin, which doctors began using to treat cancer in the late 1970s, destroys cancer cells by cross-linking their DNA, which ultimately triggers cell death. Despite its adverse side effects, which also include nerve damage and nausea, about half of all cancer patients receiving chemotherapy are taking platinum drugs.

Another problem with conventional cisplatin is its relatively short lifetime in the bloodstream. Only about 1 percent of the dose given to a patient ever reaches the tumor cell DNA, and about half of it is excreted within an hour of treatment.

To prolong the time in circulation, the researchers decided to encase a derivative of cisplatin in a hydrophobic (water-repelling) nanoparticle. First, they modified the drug, which is normally hydrophilic (water-attracting), with two hexanoic acid units, organic fragments that repel water. That enabled them to encapsulate the resulting prodrug in a nanoparticle.

Using this approach, much more of the drug reaches the tumor. The researchers found that the nanoparticles circulated in the bloodstream for about 24 hours, at least 5 times longer than un-encapsulated cisplatin. They also found that it did not accumulate as much in the kidneys as conventional cisplatin.

To help the nanparticles reach their target, the researchers also coated them with molecules that bind to PSMA (prostate specific membrane antigen), a protein found on most prostate cancer cells.

After showing the nanoparticles' improved durability in the blood, the researchers tested their effectiveness by treating mice implanted with human prostate tumors. They found that the nanoparticles reduced tumor size as much as conventional cisplatin over 30 days, but with only 30 percent of the dose.

"They have very elegantly showed not just improved efficacy but also decreased toxicity," says Mansoor Amiji, chair of pharmaceutical sciences at Northeastern University's Bouvé College of Health Sciences, who was not involved in the research. "With a nanoparticle, you should be able to get higher doses into the patient, so you can have a much better therapeutic result and not worry as much about side effects."

This type of nanoparticle design could be easily adapted to carry other types of drugs, or even more than one drug at a time, as the researchers reported in a PNAS paper last October. They could also be designed to target tumors other than prostate cancer, as long as those tumors have known receptors that could be targeted. One example is the Her-2 receptor abundant in some types of breast cancer, says Lippard.

The particles tested in this paper are based on the same design as particles developed by Farokhzad and MIT Institute Professor Robert Langer that deliver the cancer drug docetaxel. A Phase I clinical trial to assess those particles began January 7,2011 by BIND Biosciences.

Additional animal testing is needed before the cisplatin-carrying particles can go into human clinical trials, says Farokhzad. "At the end of the day, if the development results are all promising, then we would hope to put something like this in humans within the next three years," he says.

####

For more information, please click here

Contacts:
Brigham and Women’s Hospital
Suzanne Benz
(617) 534-1604

75 Francis Street
Boston, MA 02115 USA

Copyright © Brigham and Women’s Hospital

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

http://farokhzad.bwh.harvard.edu/

http://web.mit.edu/lippardlab/

Related News Press

News and information

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Discoveries

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Announcements

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Research partnerships

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

New era in high field superconducting magnets – opening new frontiers in science, nanotechnology and materials discovery January 9th, 2018

Touchy nanotubes work better when clean: Rice, Swansea scientists show that decontaminating nanotubes can simplify nanoscale devices January 4th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project