Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nanorods Developed in UC Riverside Lab Could Greatly Improve Visual Display of Information: Technology has potential applications in a wide variety of color displays

From left to right: Iron oxide (Fe3O4) particles are coated with silica (SiO2) to form tiny linear chains that grow into robust peapod-like structures with the application of more silica. Image credit: Yin lab, UC Riverside.
From left to right: Iron oxide (Fe3O4) particles are coated with silica (SiO2) to form tiny linear chains that grow into robust peapod-like structures with the application of more silica. Image credit: Yin lab, UC Riverside.

Abstract:
Chemists at the University of California, Riverside have developed tiny, nanoscale-size rods of iron oxide particles in the lab that respond to an external magnetic field in a way that could dramatically improve how visual information is displayed in the future.

Nanorods Developed in UC Riverside Lab Could Greatly Improve Visual Display of Information: Technology has potential applications in a wide variety of color displays

Riverside, CA | Posted on March 14th, 2011

Previously, Yadong Yin's lab showed that when an external magnetic field is applied to iron oxide particles in solution, the solution changes color in response to the strength and orientation of the magnetic field. Now his lab has succeeded in applying a coating of silica (silicon dioxide) to the iron oxide particles so that when they come together in solution, like linearly connected spheres, they eventually form tiny rods - or "nanorods" - that permanently retain their peapod-like structure.

When an external magnetic field is applied to the solution of nanorods, they align themselves parallel to one another like a set of tiny flashlights turned in one direction, and display a brilliant color.

"We have essentially developed tunable photonic materials whose properties can be manipulated by changing their orientation with external fields," said Yin, an assistant professor of chemistry. "These nanorods with configurable internal periodicity represent the smallest possible photonic structures that can effectively diffract visible light. This work paves the way for fabricating magnetically responsive photonic structures with significantly reduced dimensions so that color manipulation with higher resolution can be realized."

Applications of the technology include high-definition pattern formation, posters, pictures, energy efficient color displays, and devices like traffic signals that routinely use a set of colors. Other applications are in bio- and chemical sensing as well as biomedical labeling and imaging. Color displays that currently cannot be seen easily in sunlight - for example, a laptop screen - will be seen more clearly and brightly on devices that utilize the nanorod technology since the rods simply diffract a color from the visible light incident on them.

Study results appear online today (March 14) in Angewandte Chemie. The research will be highlighted on the back cover of an upcoming print issue.

In the lab, Yin and his graduate students Yongxing Hu and Le He initially coated the magnetic iron oxide molecules with a thin layer of silica. Then they applied a magnetic field to assemble the particles into chains. Next, they coated the chains with an additional layer of silica to allow for a silica shell to form around and stabilize the chain structure.

According to the researchers, the timing of magnetic field exposure is critically important to the success of the chain formation because it allows for fine-tuning the "interparticle" spacing - the distance between any two particles - within photonic chains. They report that the chaining of the magnetic particles needs to be induced by brief exposure to external fields during the silica coating process so that the particles temporarily stay connected, allowing additional silica deposition to then fix the chains into mechanically robust rods or wires.

They also report in the research paper that the interparticle spacing within the chains in a sample can be fine-tuned by adjusting the timing of the magnetic field exposure; the length of the individual chains, which does not affect the color displayed, can be controlled by changing the duration of the magnetic field exposure.

"The photonic nanorods that we developed disperse randomly in solution in the absence of a magnetic field, but align themselves and show diffraction color instantly when an external field is applied," Yin said. "It is the periodic arrangement of the iron oxide particles that effectively diffracts visible light and displays brilliant colors."

He explained that all the one-dimensional photonic rods within a sample show a single color because the particles arrange themselves with uniform periodicity - that is, the interparticle spacing within all the chains is the same, regardless of the length of the individual chains. Further, the photonic chains remain separated from each other in magnetic fields due to the magnetic repulsive force that acts perpendicular to the direction of the magnetic field.

The researchers note that a simple and convenient way to change the periodicity in the rods is to use iron oxide clusters of different sizes. This, they argue, would make it possible to produce photonic rods with diffraction wavelengths across a wide range of spectrum from near ultraviolet to near infrared.

"One major advantage of the new technology is that it hardly requires any energy to change the orientation of the nanorods and achieve brightness or a color," Yin said. "A current drawback, however, is that the interparticle spacing within the chains gets fixed once the silica coating is applied, allowing for no flexibility and only one color to be displayed."

His lab is working now on achieving bistability for the nanorods. If the lab is successful, the nanorods would be capable of diffracting two colors, one at a time.

"This would allow the same device or pixel to display one color for a while and a different color later," said Yin, a Cottrell Scholar.

A grant to Yin from the National Science Foundation supported the study.

The UCR Office of Technology Commercialization has filed numerous patent applications covering various aspects of Yin's technology, and is currently in negotiations to finalize a commercial license with a California corporation that will develop the technology for market.

####

About University of California, Riverside
The University of California, Riverside (www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 20,500 students. The campus will open a medical school in 2012 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion.

A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. To learn more, call (951) UCR-NEWS.

For more information, please click here

Contacts:
Iqbal Pittalwala
Tel: (951) 827-6050


Yadong Yin

Copyright © University of California, Riverside

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Video caption: When an external magnetic field is applied to the solution of nanorods, they align themselves parallel to one another like a set of tiny flashlights turned in one direction, and display a brilliant color. Video credit: Yin lab, UC Riverside.

More about Yadong Yin

Department of Chemistry

Research paper

Related News Press

News and information

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Harris & Harris Group Continues Its Blog Series to Highlight Most Impactful Portfolio Companies With Champions Oncology, Inc. April 17th, 2014

'Life Redesigned: The Emergence of Synthetic Biology' Lecture at Brookhaven Lab on Wednesday, April 30: Biomedical Engineer James Collins to Speak for BSA Distinguished Lecture Series April 16th, 2014

ECHA Planning Workshop on Regulatory Challenges in the Risk Assessment of Nanomaterials April 16th, 2014

Display technology/LEDs/SS Lighting/OLEDs

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Better solar cells, better LED light and vast optical possibilities April 12th, 2014

Printed Electronics Europe - Plastic Logic shows a flexible OLED display for wearable devices April 11th, 2014

Videos/Movies

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone April 15th, 2014

Nanotubes/Buckyballs

Effects of Carbon Nanotubes Studied on Pregnant Mothers April 12th, 2014

Nanotech Business Review 2013-2014 April 9th, 2014

Scientists Succeed in Simultaneous Determination of Acetaminophen, Codeine in Drug Samples April 9th, 2014

Rebar technique strengthens case for graphene: Rice University lab makes hybrid nanotube-graphene material that promises to simplify manufacturing April 7th, 2014

Discoveries

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Scientists observe quantum superconductor-metal transition and superconducting glass: A team including MIPT physicist observed quantum superconductor-metal transition and superconducting glass April 16th, 2014

UT Arlington physicist creates new nanoparticle for cancer therapy April 16th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Announcements

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Harris & Harris Group Continues Its Blog Series to Highlight Most Impactful Portfolio Companies With Champions Oncology, Inc. April 17th, 2014

Aerotech X-Y ball-screw stage for economical high performance Planar positioning April 16th, 2014

Energy Research Facility Construction Project at Brookhaven Lab Wins U.S. Energy Secretary's Achievement Award April 16th, 2014

Photonics/Optics/Lasers

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Lumerical files a provisional patent that extends the standard eigenmode expansion propagation technique to better address waveguide component design. Lumericalís EME propagation tool will address a wide set of waveguide applications in silicon photonics and integrated optics April 16th, 2014

Near-field Nanophotonics Workshop in Boston April 14th, 2014

Scientists in Singapore develop novel ultra-fast electrical circuits using light-generated tunneling currents April 10th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE