Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > UCLA nanotech research mimics enzymes in directing chemical reactions: New method for studying molecule reactions a breakthrough in organic chemistry

Two molecules are placed in proximity in "cutouts" in self-assembled monolayers. When excited with ultraviolet light, they are constrained to react along a pathway different than they would if they could reorient in solution.
Two molecules are placed in proximity in "cutouts" in self-assembled monolayers. When excited with ultraviolet light, they are constrained to react along a pathway different than they would if they could reorient in solution.

Abstract:
Good chemists are passive-aggressive - they manipulate molecules without actually touching them.

In a feat of manipulating substances at the nanoscale, UCLA researchers and colleagues demonstrated a method for isolating two molecules together on a substrate and controlling how those two molecules react when excited with ultraviolet light, making detailed observations both before and after the reaction.

UCLA nanotech research mimics enzymes in directing chemical reactions: New method for studying molecule reactions a breakthrough in organic chemistry

Los Angeles, CA | Posted on March 11th, 2011

Their research is published today in the journal Science.

"This is one step in measuring and understanding the interactions between light and molecules, which we hope will eventually lead to more efficient conversion of sunlight to electrical and other usable forms of energy," said lead study author Paul S. Weiss, a distinguished professor of chemistry and biochemistry who holds UCLA's Fred Kavli Chair in Nanosystems Sciences. "Here, we used the energy from the light to induce a chemical reaction in a way that would not happen for molecules free to move in solution; they were held in place by their attachment to a surface and by the unreactive matrix of molecules around them."

Weiss is also director of UCLA's California NanoSystems Institute (CNSI) and a professor of materials science and engineering at the UCLA Henry Samueli School of Engineering and Applied Science.

Controlling exactly how molecules combine in order to study the resulting reactions is called regioselectivity. It is important because there are a variety of ways that molecules can combine, with varying chemical products. One way to direct a reaction is to isolate molecules and to hold them together to get regioselective reactions; this is the strategy used by enzymes in many biochemical reactions.

"The specialized scanning tunneling microscope used for these studies can also measure the absorption of light and charge separation in molecules designed for solar cells," Weiss said. "This gives us a new way to optimize these molecules, in collaboration with synthetic chemists. This is what first brought us together with our collaborators at the University of Washington, led by Prof. Alex Jen."

Alex K-Y. Jen holds the Boeing-Johnson Chair at the University of Washington, where he is a professor of materials science and engineering and of chemistry. The theoretical aspects of the study were led by Kendall Houk, a UCLA professor of chemistry and biochemistry who holds the Saul Winstein Chair in Organic Chemistry. Houk is a CNSI researcher.

The study's first author, Moonhee Kim, a graduate student in Weiss' lab, managed to isolate and control the reactions of pairs of molecules by creating nanostructures tailored to allow only two molecules fit in place. The molecules used in the study are photosensitive and are used in organic solar cells; similar techniques could be used to study a wide variety of molecules. Manipulating the way molecules in organic solar cells come together may also ultimately lead to greater efficiency.

To isolate the two molecules and align them in the desired - but unnatural - way, Kim utilized a concept similar to that of toddler's toys that feature cutouts in which only certain shapes will fit.

She created a defect, or cutout, in a self-assembled monolayer, or SAM, a single layer of molecules on a flat surface - in this case, gold. The defect in the SAM was sized so that only two organic reactant molecules would fit and would only attach with the desired alignment. As a guide to attach the molecules to the SAM in the correct orientation, sulfur was attached to the bottoms of the molecules, as sulfur binds readily to gold.

"The standard procedure for this type of chemistry is to combine a bunch of molecules in solution and let them react together, but through random combinations, only 3 percent of molecules might react in this way," UCLA's Houk said. "Our method is much more targeted. Instead of doing one measurement on thousands of molecules, we are doing a range of measurements on just two molecules."

After the molecules were isolated and trapped on the substrate, they still needed to be excited with light to react. In this case, the energy was supplied by ultraviolet light, which triggered the reaction. The researchers were able to verify the proper alignment and the reaction of the molecules using the special microscope developed by Kim and Weiss.

The work was funded by the U.S. Department of Energy, the National Science Foundation, the Air Force Office of Scientific Research and the Kavli Foundation.

####

For more information, please click here

Copyright © UCLA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Protein Building Blocks for Nanosystems: Scientists develop method for producing bio-based materials with new properties April 17th, 2015

Oxford Instruments commissions high field outsert magnet system for the National High Magnetic Field Laboratory 32 Tesla magnet program April 17th, 2015

QD Vision Expands Product Line with Two-Millimeter Color LCD Display Optic: Color IQ™ Optic Enables Full-Color Gamut for Ultra-Thin Displays and All-in-One Computers April 16th, 2015

The National Science Foundation names engineering researcher Andrea Alú its Alan T. Waterman awardee for 2015: Alú is a pioneer in the field of metamaterials who has developed "cloaking" technology to make objects invisible to sensors April 16th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Oxford Instruments commissions high field outsert magnet system for the National High Magnetic Field Laboratory 32 Tesla magnet program April 17th, 2015

The National Science Foundation names engineering researcher Andrea Alú its Alan T. Waterman awardee for 2015: Alú is a pioneer in the field of metamaterials who has developed "cloaking" technology to make objects invisible to sensors April 16th, 2015

Long Island Capital Alliance Announces Participants for Brookhaven National Laboratory Technology Transfer Capital Forum on May 8: Keynote Speaker Dr. Doon Gibbs, Director of Brookhaven National Laboratory April 16th, 2015

Major advance in artificial photosynthesis poses win/win for the environment: Berkeley Lab researchers perform solar-powered green chemistry with captured CO2 April 16th, 2015

Chip Technology

Nanotubes with two walls have singular qualities: Rice University lab calculates unique electronic qualities of double-walled carbon nanotubes April 16th, 2015

Graphenea embarks on a new era April 16th, 2015

Quantization of 'surface Dirac states' could lead to exotic applications April 15th, 2015

Study shows novel pattern of electrical charge movement through DNA April 14th, 2015

Self Assembly

Carnegie Mellon chemists create tiny gold nanoparticles that reflect nature's patterns April 9th, 2015

DWI scientists program the lifetime of self-assembled nanostructures April 9th, 2015

In situ production of biofunctionalised few-layer defect-free microsheets of graphene April 7th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Discoveries

Protein Building Blocks for Nanosystems: Scientists develop method for producing bio-based materials with new properties April 17th, 2015

Major advance in artificial photosynthesis poses win/win for the environment: Berkeley Lab researchers perform solar-powered green chemistry with captured CO2 April 16th, 2015

Newly-Developed Nanocatalysts Increase Performance of Fuel Cells April 16th, 2015

Lanthanide-Organic Framework Nanothermometers Prepared by Spray-Drying April 16th, 2015

Announcements

Protein Building Blocks for Nanosystems: Scientists develop method for producing bio-based materials with new properties April 17th, 2015

Oxford Instruments commissions high field outsert magnet system for the National High Magnetic Field Laboratory 32 Tesla magnet program April 17th, 2015

Newly-Developed Nanocatalysts Increase Performance of Fuel Cells April 16th, 2015

Lanthanide-Organic Framework Nanothermometers Prepared by Spray-Drying April 16th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE