Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Trapping prostate cancer cells to keep them from spreading provides hope

Abstract:
When prostate cancer stem cells (CSCs) were enclosed in self-assembling nanomaterials made of peptides (SAP), the SAP stopped cancer stem cell colony formation and also stopped the division of cancer cells in laboratory cultures (in vitro). According to the international team of researchers who built and tested the nano-sized traps and published their results in a recent issue of Cell Transplantation (20:1), which is freely available on-line at www.ingentaconnect.com/content/cog/ct/ , the cancer cells grew and multiplied after they were "liberated" from their SAP prisons.

Trapping prostate cancer cells to keep them from spreading provides hope

Tampa, FL | Posted on March 10th, 2011

In their article, the researchers suggested that CSCs may be the origin of prostate tumor metastasis, making them an "ideal target" for inhibiting disease metastasis. The group's previous work in building nanomaterials showed that by using SAPs they were able to control the proliferation, elongation and maturation of cells in vitro.

"In this study, we have shown that prostate CSCs can be placed into stasis for an extended period of time without causing them to differentiate," said study corresponding author Dr. Rutledge Ellis-Behnke of the Heidelberg University-based Nanomedicine Translational Think Tank. "If cells are prevented from migrating away from the treatment, they could be subjected to additional targeting."

For the researchers, the isolation of cancer cells with stem-like characteristics "provides solid evidence" that CSCs may exist within the tumor. Additionally, CSCs may account for some treatment failures when treatments are unable to successfully target cancer stem cells, which may be resistant to chemotherapy drugs. Too, CSCs have been found to be more invasive than non-CSCs. The authors speculated that by injecting the material directly into the tumor, it may be possible to stop the spread of metastatic cells.

The research team also suggested that trapping CSCs in the nanomaterial would allow for loading of the SAP with chemotherapy agents, thus offering an increased effectiveness of a localized treatment when targeted cancer cells were unable to 'escape' their chemical enemies. This approach for treating metastatic hormone refractory prostate cancer (HRPC) - a cancer for which all current therapies fail - may offer hope as a successful treatment.

"The goal of cancer therapy is to reduce the ability of cancer cells to divide and migrate," said Dr. Ellis-Behnke. "Accordingly, we have shown that SAP can completely inhibit a prostate CSC from self-renewal while preserving its viability and stem cell properties."

Their study concluded that SAP may be "an effective nanomaterial for inhibiting cancer progression and metastasis."

"The ability to sequester cancer stem cells in SAP to prevent the spread of a prostate cancer is a big step toward finding effective treatments for cancer," Shinn-Zong Lin, professor of neurosurgery at China University Medical Hospital, Taiwan and chair of the Pan Pacific Symposium on Stem Cell Research where this work was first presented. "It will be of considerable interest to se how this technology develops."

Citation : Ling, P. M. T.; Cheung, S. W. H.; Tay, D. K. C.; Ellis-Behnke, R. G. Using Self-Assembled Nanomaterials to Inhibit the Formation of Metastatic Cancer Stem Cell Colonies In Vitro. Cell Transplantation 20(1):127-131; 2011.

####

About Cell Transplantation Center of Excellence for Aging and Brain Repair
The editorial offices for CELL TRANSPLANTATION are at the Center of Excellence for Aging and Brain Repair, College of Medicine, the University of South Florida and the Diabetes Research Institute, University of Miami Miller School of Medicine. Contact, David Eve, PhD. at or Camillo Ricordi, MD at

For more information, please click here

Contacts:
David Eve


Dr. Rutledge Ellis-Behnke
Nanomedicine Translational Think Tank
Medical Faculty Mannheim
Ruprecht-Karls-University of Heidelberg
Theodor-Kutzer-Ufer 1-3
Mannheim 68167, Germany
Tel. +49 (0) 621 383 6078

or

Voicemail: +1 617 253 4556.

Copyright © Cell Transplantation Center of Excellence for Aging

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizard® AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Nanomedicine

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Good vibrations help reveal molecular details: Rice University scientists combine disciplines to pinpoint small structures in unlabeled molecules February 15th, 2017

In-cell molecular sieve from protein crystal February 14th, 2017

Cedars-Sinai, UCLA Scientists Use New ‘Blood Biopsies’ With Experimental Device to Speed Cancer Diagnosis and Predict Disease Spread: Leading-Edge Research Is Part of National Cancer Moonshot Initiative February 13th, 2017

Discoveries

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Announcements

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizard® AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project