Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > CNST Researchers Use Spin Waves to Measure Magnetic Polarization of Electrical Current

Abstract:
In the hard drive industry, the rapid growth of storage density has been propelled in part by developments in the sensors used to read the magnetic "bits" on the disk. Recently, the use of giant magnetoresistance (GMR) in such sensors, with current flowing in the plane of a multilayer film, has given way to the use of tunneling magnetoresistance, where current flows perpendicular to the plane of the multilayer through a tunnel barrier. To avoid the prohibitively high resistance of smaller tunnel junction sensors, future miniaturization of the sensors is projected to again require the use of GMR in all-metal multilayers, but with current flowing perpendicular to the plane. In a collaboration with researchers at Hitachi Global Storage Technologies, CNST researchers used their recently developed spin wave Doppler technique to measure the current polarization in novel (CoFe)1-xGex alloys being investigated for possible use in future disk drive read head sensors.* A critical parameter in determining the GMR of a multilayer sensor film is the current polarization, which is the degree to which the current carried in a magnetic metal is carried by electrons with spins either parallel or anti-parallel to the magnetization. The CNST researchers' measurement technique used nanostructured antennas to launch and detect spin waves in current-carrying (CoFe)1-xGex stripes, allowing them to measure shifts of a resonant transmission frequency that revealed the current-induced drift velocity of the magnetization and the current polarization. The results indicate polarization up to 95 % in these alloys. Although comparable polarization values have been found in materials that require annealing at prohibitively high temperatures, the (CoFe)1-xGex alloys are compatible with sensor manufacturing.

CNST Researchers Use Spin Waves to Measure Magnetic Polarization of Electrical Current

Boulder, CO | Posted on March 9th, 2011

Enhanced magnetization drift velocity and current polarization in (CoFe)1−xGex alloys, M. Zhu, B. D. Soe, R. D. McMichael, M. J. Carey, S. Maat, and J. R. Childress, Applied Physics Letters 98, 072510-072510-3 (2011).

####

For more information, please click here

Contacts:
Robert McMichael
301-975-5121

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Spintronics

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Linearly assembled Ag-Cu nanoclusters: Spin transfer and distance-dependent spin coupling November 4th, 2022

Memory Technology

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Sensors

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project