Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > UAlbany NanoCollege Launches New Research Platform

Abstract:
The College of Nanoscale Science and Engineering (CNSE) of the University at Albany today announced the introduction of an innovative 28nm technology platform to build fully-enabled, industry-compatible integrated devices at the NanoCollege, further expanding the most advanced nanoelectronics research and development (R&D) capabilities at any university or industry consortium in the world.

UAlbany NanoCollege Launches New Research Platform

Albany, NY | Posted on March 9th, 2011

The UAlbany NanoCollege has acquired from IBM the rights to low power, 28nm high-k metal gate (HKMG) bulk CMOS technology expected to be deployed at CNSE's world-class Albany NanoTech Complex this year. The presence of these innovative capabilities will provide new technology resources for existing global collaboration partners, and offer opportunities to attract new companies to the nanotech research being done at CNSE, where a 65nm R&D process line is already successfully installed.

HKMG technology is seen as a key enabler for scaling of advanced CMOS technologies and devices, offering improved performance and reduced power consumption. These advantages will help accelerate commercialization of nanoelectronics innovations for a host of products and sectors utilizing advanced silicon technology driving exciting next-generation applications in computation, communication, health care, energy and other critical areas.

"The addition of IBM's 28nm platform provides the UAlbany NanoCollege with enhanced capabilities to support and enable novel technology solutions that target the critical challenges facing industry," said Richard Brilla, CNSE Vice President for Strategy, Alliances and Consortia. "We look forward to utilizing these advanced resources to drive innovative technologies while continuing to build a world-class ecosystem for research, development and commercialization."

"IBM is enabling CNSE to offer advanced research capability by licensing our state-of-the-art 28nm technology," said Paul Farrar, Vice President, IBM Microelectronics. "High-k metal gate is the fundamental game changer in CMOS technology needed for advanced research."

The enhanced performance and reduced power consumption using HKMG technology for 28nm circuits have been significant as compared to previous technology generations, with performance improvements of 40 percent and power reduction of 30 percent over 45nm technology circuits.

####

About CNSE
The UAlbany CNSE is the first college in the world dedicated to education, research, development, and deployment in the emerging disciplines of nanoscience, nanoengineering, nanobioscience, and nanoeconomics. CNSEs Albany NanoTech Complex is the most advanced research enterprise of its kind at any university in the world. With over $7 billion in high-tech investments, the 800,000-square-foot complex attracts corporate partners from around the world and offers students a one-of-a-kind academic experience. The UAlbany NanoCollege houses the only fully-integrated, 300mm wafer, computer chip pilot prototyping and demonstration line within 80,000 square feet of Class 1 capable cleanrooms. More than 2,500 scientists, researchers, engineers, students, and faculty work on site, from companies including IBM, GlobalFoundries, SEMATECH, Toshiba, Samsung, Applied Materials, Tokyo Electron, ASML, Novellus Systems, Vistec Lithography and Atotech. An expansion currently in the planning stages is projected to increase the size of CNSEs Albany NanoTech Complex to over 1,250,000 square feet of next-generation infrastructure housing over 105,000 square feet of Class 1 capable cleanrooms and more than 3,750 scientists, researchers and engineers from CNSE and global corporations.

For more information, please click here

Contacts:
Steve Janack
CNSE
Vice President
Marketing and Communications
(phone) 518-956-7322
(cell) 518-312-5009

Copyright © CNSE

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

Creation of a Highly Efficient Technique to Develop Low-Friction Materials Which Are Drawing Attention in Association with Energy Issues August 26th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Symphony of nanoplasmonic and optical resonators leads to magnificent laser-like light emission August 26th, 2014

Academic/Education

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

SEMATECH and Newly Merged SUNY CNSE/SUNYIT Launch New Patterning Center to Further Advance Materials Development: Center to Provide Access to Critical Tools that Support Semiconductor Technology Node Development August 7th, 2014

Oxford Instruments Asylum Research and the Center for Nanoscale Systems at Harvard University Present a Workshop on AFM Nanomechanical and Nanoelectrical Characterization, Aug. 21-22 August 6th, 2014

University of Manchester selects Anasys AFM-IR for coatings and corrosion research July 30th, 2014

Chip Technology

Scientists craft atomically seamless, thinnest-possible semiconductor junctions August 26th, 2014

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Symphony of nanoplasmonic and optical resonators leads to magnificent laser-like light emission August 26th, 2014

Nanoelectronics

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

Announcements

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

Creation of a Highly Efficient Technique to Develop Low-Friction Materials Which Are Drawing Attention in Association with Energy Issues August 26th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Symphony of nanoplasmonic and optical resonators leads to magnificent laser-like light emission August 26th, 2014

Alliances/Partnerships/Distributorships

JPK expands availability of instrumentation in the USA appointing new distributors launched a new web site to support the US market - AFM now available to US users August 26th, 2014

Sunblock poses potential hazard to sea life August 20th, 2014

SouthWest NanoTechnologies Appoints Matteson-Ridolfi for U.S. Distribution of its SMW Specialty Multiwall Carbon Nanotubes August 13th, 2014

Could hemp nanosheets topple graphene for making the ideal supercapacitor? August 12th, 2014

Research partnerships

Scientists craft atomically seamless, thinnest-possible semiconductor junctions August 26th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Symphony of nanoplasmonic and optical resonators leads to magnificent laser-like light emission August 26th, 2014

Picosun joins forces with IMEC for novel, industrial ALD applications August 25th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE