Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Combined molecular study techniques reveal more about DNA proteins

Illinois researchers developed a new technique that
combines optical traps (red) with fluorescence (green) to study the proteins that regulate DNA.

Photo by Matthew Comstock
Illinois researchers developed a new technique that combines optical traps (red) with fluorescence (green) to study the proteins that regulate DNA.

Photo by Matthew Comstock

Abstract:
Illinois researchers have combined two molecular imaging technologies to create an instrument with incredible sensitivity that provides new, detailed insight into dynamic molecular processes.

Combined molecular study techniques reveal more about DNA proteins

Champaign, IL | Posted on March 2nd, 2011

Physics professors Taekjip Ha and Yann Chemla and combined their expertise in single-molecule biophysics - fluorescence microscopy and optical traps, respectively - to study binding and unbinding of individual DNA segments to a larger strand. They and their joint postdoctoral researcher Matthew Comstock detail their technique in a paper published in the Feb. 20 online edition of Nature Methods.

Both professors, who are also affiliated with the U. of I. Institute for Genomic Biology, have particularly studied proteins and enzymes that regulate DNA, such as the enzyme helicase that unwinds DNA for duplication or transcription to RNA. Fluorescent microscopy techniques allow researchers to observe proteins as they conform and move, but often lack the spatial range to track the protein's motion over distance.

Optical traps, meanwhile, enable researchers to study a protein's translocation, but not its conformation. Chemla compares traditional optical traps to fishing. A single molecule of DNA is tethered between two attachment points, and the activity of a protein bound to it is only inferred from how it tugs on the tether, much like a fish at the end of a line. This can reveal a lot about a protein's activity and motion, but the technique has glaring limitations as well. For example, it is difficult to know how many proteins or the types of proteins that are involved.
"Also, these proteins may do all sorts of things beyond tugging on our line that we may not be sensitive to," Chemla said. "Fluorescence allows you to have an additional readout to actually see these things, and the key is that we can now measure them simultaneously. This work was a real synthesis of the expertise of two groups at the Center for the Physics of Living Cells at the U. of I."

The combination allows Chemla, Ha and their group to measure both a protein's motion - sensitive to translocation as small as one DNA base pair, a distance of only a few angstroms - and also conformational changes as it acts. This can reveal details about its mechanism that would not have been accessible before.

"It was a major technical challenge, but the final product is a one-of-a-kind instrument with unique capabilities," Chemla said. "It's like taking a rudimentary, real-time ‘movie' of what individual molecules are doing."

The National Science Foundation, National Institutes of Health and the Howard Hughes Medical Institute supported this work.

####

For more information, please click here

Contacts:
Liz Ahlberg
Physical Sciences Editor
217-244-1073


Yann Chemla
217-333-6501


Taekjip Ha
217-265-0717

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

“Ultrahigh-Resolution Optical Trap With Single-Fluorophore Sensitivity.”

Related News Press

News and information

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Physics

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

Imaging

Industry’s First Dedicated Cryo-DualBeam System Automates Preparation of Frozen, Biological Samples: New Thermo Scientific Aquilos FIB/SEM protects sample integrity and enhances productivity for cryo-electron tomography workflow August 8th, 2017

Thermo Fisher Scientific Advances Cryo-EM Leadership to Drive Structural Biology Discoveries: New Thermo Scientific Krios G3i raises bar for performance, automation and time-to-results Breakthrough Thermo Scientific Glacios provides a cryo-EM entry path for a broader range of res August 8th, 2017

New Quattro Field Emission ESEM Emphasizes Versatility and Ease of Use: Thermo Scientific Quattro ESEM allows materials science researchers to study nanoscale structure in almost any material under a range of environmental conditions August 8th, 2017

Thermo Fisher Scientific’s New Talos F200i S/TEM Delivers Flexible, High-Performance Imaging: New compact S/TEM can be configured to meet specific imaging and analytical requirements for materials characterization in research laboratories August 8th, 2017

Nanomedicine

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Discoveries

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Announcements

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project