Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Combined molecular study techniques reveal more about DNA proteins

Illinois researchers developed a new technique that
combines optical traps (red) with fluorescence (green) to study the proteins that regulate DNA.

Photo by Matthew Comstock
Illinois researchers developed a new technique that combines optical traps (red) with fluorescence (green) to study the proteins that regulate DNA.

Photo by Matthew Comstock

Abstract:
Illinois researchers have combined two molecular imaging technologies to create an instrument with incredible sensitivity that provides new, detailed insight into dynamic molecular processes.

Combined molecular study techniques reveal more about DNA proteins

Champaign, IL | Posted on March 2nd, 2011

Physics professors Taekjip Ha and Yann Chemla and combined their expertise in single-molecule biophysics - fluorescence microscopy and optical traps, respectively - to study binding and unbinding of individual DNA segments to a larger strand. They and their joint postdoctoral researcher Matthew Comstock detail their technique in a paper published in the Feb. 20 online edition of Nature Methods.

Both professors, who are also affiliated with the U. of I. Institute for Genomic Biology, have particularly studied proteins and enzymes that regulate DNA, such as the enzyme helicase that unwinds DNA for duplication or transcription to RNA. Fluorescent microscopy techniques allow researchers to observe proteins as they conform and move, but often lack the spatial range to track the protein's motion over distance.

Optical traps, meanwhile, enable researchers to study a protein's translocation, but not its conformation. Chemla compares traditional optical traps to fishing. A single molecule of DNA is tethered between two attachment points, and the activity of a protein bound to it is only inferred from how it tugs on the tether, much like a fish at the end of a line. This can reveal a lot about a protein's activity and motion, but the technique has glaring limitations as well. For example, it is difficult to know how many proteins or the types of proteins that are involved.
"Also, these proteins may do all sorts of things beyond tugging on our line that we may not be sensitive to," Chemla said. "Fluorescence allows you to have an additional readout to actually see these things, and the key is that we can now measure them simultaneously. This work was a real synthesis of the expertise of two groups at the Center for the Physics of Living Cells at the U. of I."

The combination allows Chemla, Ha and their group to measure both a protein's motion - sensitive to translocation as small as one DNA base pair, a distance of only a few angstroms - and also conformational changes as it acts. This can reveal details about its mechanism that would not have been accessible before.

"It was a major technical challenge, but the final product is a one-of-a-kind instrument with unique capabilities," Chemla said. "It's like taking a rudimentary, real-time ‘movie' of what individual molecules are doing."

The National Science Foundation, National Institutes of Health and the Howard Hughes Medical Institute supported this work.

####

For more information, please click here

Contacts:
Liz Ahlberg
Physical Sciences Editor
217-244-1073


Yann Chemla
217-333-6501


Taekjip Ha
217-265-0717

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

“Ultrahigh-Resolution Optical Trap With Single-Fluorophore Sensitivity.”

Related News Press

News and information

Harris & Harris Group to Host Conference Call on Second-Quarter 2014 Financial Results on August 15, 2014 July 23rd, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Deadline Announced for Registration in 7th Int'l Nanotechnology Festival in Iran July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Imaging

EPFL Research on the use of AFM based nanoscale IR spectroscopy for the study of single amyloid molecules wins poster competition at Swiss Physics Society meeting July 22nd, 2014

Bruker Awarded Fourth PeakForce Tapping Patent: AFM Mode Uniquely Combines Highest Resolution Imaging and Material Property Mapping July 22nd, 2014

SentiMag® Now Available in Australia and New Zealand July 21st, 2014

"Nanocamera" takes pictures at distances smaller than light's own wavelength: How is it possible to record optically encoded information for distances smaller than the wavelength of light? July 17th, 2014

Self-assembling nanoparticle could improve MRI scanning for cancer diagnosis: Scientists have designed a new self-assembling nanoparticle that targets tumours, to help doctors diagnose cancer earlier July 16th, 2014

Physics

Physicists Use Computer Models to Reveal Quantum Effects in Biological Oxygen Transport: The team solved a long-standing question by explaining why oxygen – and not deadly carbon monoxide – preferably binds to the proteins that transport it around the body. July 17th, 2014

Flashes of light on the superconductor: Using light to modulate the properties of a copper-based superconductor July 15th, 2014

Weizmann Institute scientists take another step down the long road toward quantum computers July 14th, 2014

Nanomedicine

Researchers create vaccine for dust-mite allergies Main Page Content: Vaccine reduced lung inflammation to allergens in lab and animal tests July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

SentiMag® Now Available in Australia and New Zealand July 21st, 2014

More than glitter: Scientists explain how gold nanoparticles easily penetrate cells, making them useful for delivering drugs July 21st, 2014

Discoveries

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Announcements

Harris & Harris Group to Host Conference Call on Second-Quarter 2014 Financial Results on August 15, 2014 July 23rd, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Deadline Announced for Registration in 7th Int'l Nanotechnology Festival in Iran July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE