Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Gene fuelled transporter causes breast cancer cells to self-destruct

Dr Helen McCarthy
Dr Helen McCarthy

Abstract:
Scientists at Queen's have shown that they can deliver a gene directly into breast cancer cells causing them to self-destruct, using an innovative, miniscule gene transport system, according to research published today (28 February) in the International Journal of Pharmaceutics.

Gene fuelled transporter causes breast cancer cells to self-destruct

Belfast, Northern Ireland | Posted on February 27th, 2011

Using a transport system called a Designer Biomimetic Vector (DBV), Dr Helen McCarthy, from Queen's School of Pharmacy, funded by Breast Cancer Campaign, packaged a gene into a nanoparticle 400 times smaller than the width of a human hair, allowing it to be delivered straight into breast cancer cells in the laboratory.

The gene called iNOS, is targeted specifically to breast cancer cells using the DBV where it forces the cells to produce poisonous nitric oxide; either killing the cells outright or making them more vulnerable to being destroyed by chemotherapy and radiotherapy. As this approach leaves normal healthy breast cells unaffected, this would overcome many of the toxic side effects of current treatments.

Further investigation is needed but it could be trialled in patients in as little as five years. Dr McCarthy's next step is to turn the nanoparticles into a dried powder that could be easily transported and reconstituted before being given to patients.

Dr McCarthy said: "A major stumbling block to using gene therapy in the past has been the lack of an effective delivery system. Combining the Designer Biomimetic Vector with the iNOS gene has proved successful in killing breast cancer cells in the laboratory. In the long term, I see this being used to treat people with metastatic breast cancer that has spread to the bones, ideally administered before radiotherapy and chemotherapy.

Dr Lisa Wilde, Research Information Senior Manager, Breast Cancer Campaign said: "Gene therapy could potentially be an exciting avenue for treating breast cancer. Although at an early stage, Dr McCarthy's laboratory research shows that this system for delivering toxic genes to tumour cells holds great promise and we look forward to seeing how it is translated into patients."

####

For more information, please click here

Contacts:
Media enquiries to Claire Learner, Media Relations Officer
Breast Cancer Campaign
00 44 (0)20 7749 3705

M: 07736 313698

or
Queen’s University Communications Office
00 44 (0)28 9097 3087/3091

Copyright © Queen's University Belfast

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Nanomedicine

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

A silver lining: UCSB researchers cradle silver nanoclusters inside synthetic DNA to create a programmed, tunable fluorescent array April 23rd, 2015

Discoveries

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Announcements

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project