Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Vortices get organized: Exotic entities that arrange into a crystalline structure at near room-temperature could lead to a new approach to electronic memory

Figure 1: In a skyrmion (left) the electron spins, represented as arrows about which the electrons are rotating, are arranged such they map onto the surface of a sphere (right). 
Reproduced in part from Ref. 1 © 2011 X. Z. Yu et al.
Figure 1: In a skyrmion (left) the electron spins, represented as arrows about which the electrons are rotating, are arranged such they map onto the surface of a sphere (right).

Reproduced in part from Ref. 1 © 2011 X. Z. Yu et al.

Abstract:
A crystal consisting not of atoms but exotic swirling magnetic entities, called skyrmions, has been identified at near room-temperature by Yoshinori Tokura of the RIKEN Advanced Science Institute, Wako, and his colleagues from several other institutes in Japan1. Previous observations of a skyrmion crystal state, in transition-metal-silicide materials, have been at cryogenic temperatures below 40 kelvin. The existence of skyrmions at room temperature improves the practicality of harnessing their potential for use in novel computer memories.

Vortices get organized: Exotic entities that arrange into a crystalline structure at near room-temperature could lead to a new approach to electronic memory

Wako, Japan | Posted on February 26th, 2011

Skyrmions are formed on some surfaces when the spins of the electrons—think of an arrow about which each electron rotates—collectively arrange such that they wrap around the surface of a sphere (Fig. 1). This pattern spirals in such a way that the spins on the outside point up whereas those at the core point down. This collection of spins can display many properties associated with a single particle. "A skyrmion crystal is the periodic array of these particle-like entities," explains Tokura.

Earlier neutron-scattering experiments by other researchers identified this unusual effect in both iron-cobalt silicide and manganese silicide. Tokura and his team, however, investigated skyrmions in iron germanium. This alloy has the same cubic atomic crystal structure as iron-cobalt silicide and manganese silicide—the two materials in which skyrmions have been observed at low temperatures; but it remains in the necessary magnetic structure up to a much higher temperature.

Using a transmission electron microscope, the researchers probed the magnetization on the surface of polished layers of the iron-germanium alloy. They found tell-tale signs of skyrmions at temperatures up to 260 kelvin, particularly when they applied a small magnetic field perpendicularly to the surface.

This material also provides an excellent opportunity to investigate the stability of the skyrmion crystal, the team notes. Previous studies focused on very thin layers of material. Tokura and his team investigated the influence of film thickness and found that for thicknesses greater than the distance between skyrmions, about 75 nanometers in this case, the skyrmion crystal state is suppressed and a more conventional ferromagnetic phase starts to dominate.

Skyrmions could play an important role in the development of spintronics—using electron spin to carry information in the same way that electron charge is used in conventional electronics. "Skyrmion crystals could also be applied in memory and logic devices," says Tokura. The advantage over conventional systems is that control is achieved using electric, rather than magnetic fields, which is known to be more efficient.

The corresponding author for this highlight is based at the Emergent Materials Department, RIKEN Advanced Science Institute

####

About Riken Research
RIKEN is one of Japan's largest research organizations with institutes and centers in locations throughout Japan. RIKEN's 3000+ researchers publish several hundred research articles in top scientific and technical journals every year across a broad spectrum of disciplines in physics, chemistry, biology, medicine, engineering and in many areas of technology, and the number of articles is growing year on year.

For more information, please click here

Contacts:
2-1 Hirosawa
Wako, Saitama 351-0198 Japan
+81-(0)48-462-1111

Copyright © Riken Research

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Yu, X.Z., Kanazawa, N., Onose, Y., Kimoto, K., Zhang, W.Z., Ishiwata, S., Matsui, Y. & Tokura, Y. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nature Materials 10, 106–109 (2011).

Related News Press

News and information

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

How does enzymatic pretreatment affect the nanostructure and reaction space of lignocellulosic biomass? December 18th, 2014

Silicon Valley-Based Foresight Valuation Launches STR-IP™, a New Initiative for Startups to Discover the Value of Their Intellectual Property December 18th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Laboratories

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Student Nanotechnology Laboratories Network Set Up in Iran December 15th, 2014

Unusual Electronic State Found in New Class of Unconventional Superconductors: Finding gives scientists a new group of materials to explore to unlock secrets of some materials' ability to carry current with no energy loss December 8th, 2014

Memory Technology

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Stanford team combines logic, memory to build a 'high-rise' chip: Today circuit cards are laid out like single-story towns; Futuristic architecture builds layers of logic and memory into skyscraper chips that would be smaller, faster, cheaper -- and taller December 15th, 2014

Graphene layer reads optical information from nanodiamonds electronically: Possible read head for quantum computers December 1st, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Self Assembly

Revealed: How bacteria drill into our cells and kill them December 2nd, 2014

Live Images from the Nano-cosmos: Researchers watch layers of football molecules grow November 5th, 2014

Outsmarting Thermodynamics in Self-assembly of Nanostructures: Berkeley Lab reports method for symmetry-breaking in feedback-driven self-assembly of optical metamaterials November 4th, 2014

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

Discoveries

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

How does enzymatic pretreatment affect the nanostructure and reaction space of lignocellulosic biomass? December 18th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

Announcements

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

How does enzymatic pretreatment affect the nanostructure and reaction space of lignocellulosic biomass? December 18th, 2014

Silicon Valley-Based Foresight Valuation Launches STR-IP™, a New Initiative for Startups to Discover the Value of Their Intellectual Property December 18th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE