Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Vortices get organized: Exotic entities that arrange into a crystalline structure at near room-temperature could lead to a new approach to electronic memory

Figure 1: In a skyrmion (left) the electron spins, represented as arrows about which the electrons are rotating, are arranged such they map onto the surface of a sphere (right). 
Reproduced in part from Ref. 1 © 2011 X. Z. Yu et al.
Figure 1: In a skyrmion (left) the electron spins, represented as arrows about which the electrons are rotating, are arranged such they map onto the surface of a sphere (right).

Reproduced in part from Ref. 1 © 2011 X. Z. Yu et al.

Abstract:
A crystal consisting not of atoms but exotic swirling magnetic entities, called skyrmions, has been identified at near room-temperature by Yoshinori Tokura of the RIKEN Advanced Science Institute, Wako, and his colleagues from several other institutes in Japan1. Previous observations of a skyrmion crystal state, in transition-metal-silicide materials, have been at cryogenic temperatures below 40 kelvin. The existence of skyrmions at room temperature improves the practicality of harnessing their potential for use in novel computer memories.

Vortices get organized: Exotic entities that arrange into a crystalline structure at near room-temperature could lead to a new approach to electronic memory

Wako, Japan | Posted on February 26th, 2011

Skyrmions are formed on some surfaces when the spins of the electrons—think of an arrow about which each electron rotates—collectively arrange such that they wrap around the surface of a sphere (Fig. 1). This pattern spirals in such a way that the spins on the outside point up whereas those at the core point down. This collection of spins can display many properties associated with a single particle. "A skyrmion crystal is the periodic array of these particle-like entities," explains Tokura.

Earlier neutron-scattering experiments by other researchers identified this unusual effect in both iron-cobalt silicide and manganese silicide. Tokura and his team, however, investigated skyrmions in iron germanium. This alloy has the same cubic atomic crystal structure as iron-cobalt silicide and manganese silicide—the two materials in which skyrmions have been observed at low temperatures; but it remains in the necessary magnetic structure up to a much higher temperature.

Using a transmission electron microscope, the researchers probed the magnetization on the surface of polished layers of the iron-germanium alloy. They found tell-tale signs of skyrmions at temperatures up to 260 kelvin, particularly when they applied a small magnetic field perpendicularly to the surface.

This material also provides an excellent opportunity to investigate the stability of the skyrmion crystal, the team notes. Previous studies focused on very thin layers of material. Tokura and his team investigated the influence of film thickness and found that for thicknesses greater than the distance between skyrmions, about 75 nanometers in this case, the skyrmion crystal state is suppressed and a more conventional ferromagnetic phase starts to dominate.

Skyrmions could play an important role in the development of spintronics—using electron spin to carry information in the same way that electron charge is used in conventional electronics. "Skyrmion crystals could also be applied in memory and logic devices," says Tokura. The advantage over conventional systems is that control is achieved using electric, rather than magnetic fields, which is known to be more efficient.

The corresponding author for this highlight is based at the Emergent Materials Department, RIKEN Advanced Science Institute

####

About Riken Research
RIKEN is one of Japan's largest research organizations with institutes and centers in locations throughout Japan. RIKEN's 3000+ researchers publish several hundred research articles in top scientific and technical journals every year across a broad spectrum of disciplines in physics, chemistry, biology, medicine, engineering and in many areas of technology, and the number of articles is growing year on year.

For more information, please click here

Contacts:
2-1 Hirosawa
Wako, Saitama 351-0198 Japan
+81-(0)48-462-1111

Copyright © Riken Research

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Yu, X.Z., Kanazawa, N., Onose, Y., Kimoto, K., Zhang, W.Z., Ishiwata, S., Matsui, Y. & Tokura, Y. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nature Materials 10, 106–109 (2011).

Related News Press

News and information

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Laboratories

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Electron beam microscope directly writes nanoscale features in liquid with metal ink September 16th, 2016

World's most powerful X-ray takes a 'sledgehammer' to molecules September 14th, 2016

NIST illuminates transfer of nanoscale motion through microscale machine September 14th, 2016

Memory Technology

Making the switch, this time with an insulator: Colorado State University physicists, joining the fundamental pursuit of using electron spins to store and manipulate information, have demonstrated a new approach to doing so, which could prove useful in the application of low-powe September 2nd, 2016

Diamonds and quantum information processing on the nano scale August 31st, 2016

Magnetic atoms arranged in neat rows: FAU physicists enable one-dimensional atom chains to grow August 5th, 2016

New metamaterials can change properties with a flick of a light-switch: Material can lead to new optical devices August 3rd, 2016

Self Assembly

First multicellular organism inspires the design of better cancer drugs September 15th, 2016

A versatile method to pattern functionalized nanowires: A team of researchers from Hokkaido University has developed a versatile method to pattern the structure of 'nanowires,' providing a new tool for the development of novel nanodevices September 9th, 2016

Location matters in the self-assembly of nanoclusters: Iowa State University scientists have developed a new formulation to explain an aspect of the self-assembly of nanoclusters on surfaces that has broad applications for nanotechnology September 8th, 2016

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

Discoveries

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Speedy bacteria detector could help prevent foodborne illnesses September 21st, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Announcements

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic