Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanowire Research from Stevens Makes Cover of Applied Physics Letters

Abstract:
n article by Stevens Institute of Technology researchers featured as the cover page of Applied Physics Letters Volume 98, Issue 7 represents a step forward in techniques for the arrangement of nanowires.

Nanowire Research from Stevens Makes Cover of Applied Physics Letters

Hoboken, NJ | Posted on February 25th, 2011

Professors Dr. Chang-Hwan Choi and Dr. Eui-Hyeok (EH) Yang, and graduate students Wei Xu, Rajesh Leeladhar, and Yao-Tsan Tsai, focused on nanowires, structures that are mere nanometers in diameter but have enormous potential in nanotechnology to create tiny circuits that would make possible nanoelectronics, nanophotonics, and nanobiotechnology. Such devices could forever change the way we harness energy, communicate, and treat disease.

"This highly promising research can lead to the development of reliable nano-actuators which in turn stand to benefit fields and applications as diverse as biomaterials, nano robots, artificial muscles, and high frequency nano antenna applications and is an affirmation of the cutting edge research that is taking place in the Micro/Nano Devices Laboratory," says Dr. Constantin Chassapis, Deputy Dean of the Charles V. Schaefer, Jr. School of Engineering and Science and Department Director of Mechanical Engineering.

The precise arrangement of nanowires on a large scale is crucial for any practical application. However, many current techniques for the controllable arrangement of nanowires suffer limitations.

The article, entitled, "Evaporative self-assembly of nanowires on superhydrophobic surfaces of nanotip latching surfaces," reports a technique that is highly effective in assembling nanowires. A colloid droplet of nanowires (i.e., nanowires dispersed in a water droplet) is placed on a nano-engineered superhydrophobic surface. As the droplet evaporates, two forces cause the nanowires to self-assemble on the specially-designed surface: hydrodynamic forces inside the droplet and capillary forces of the receding contact line of the droplet. Simple and convenient, the new self-assembly technique offers a high yield rate, improving the controlled arrangement of nanowires which may be used in nanodevices.

Dr. Chang-Hwan Choi
Dr. Choi is an Assistant Professor of Mechanical Engineering at Stevens, and director of the Nano and Microfluidics Laboratory. His research focuses on developing simple and efficient methods of nanofabrication that display superior pattern regularity, size, and shape over a large area. Such research improves upon standard lithography methods, which do not cover an area large enough to successfully employ not only electronic but also non-electronic applications. Dr. Choi was honored with the prestigious 2010 Young Investigator Program (YIP) Award from the Office of Naval Research (ONR).

Dr. EH Yang
Dr. Yang is an Associate Professor of Mechanical Engineering at Stevens, as well as director of the Nanoelectronics Laboratory and multi-user Micro Device Laboratory. Dr. Yang's research focuses on utilizing engineered low-dimensional carbon materials and nanostructures for realizing nanosensors/actuators and nanoelectronics/optoelectronics devices. He has published a number of articles, including recent articles in Nano Letters, Langmuir, and Applied Physics Letters. Recently he secured an NSF grant to acquire a Nanoimprint Lithography System for Stevens Micro Device Lab.

####

About Stevens Institute of Technology
The Department of Mechanical Engineering confidently addresses the challenges facing engineering now and into the future, yet remains true to the vision of the founders of Stevens Institute in 1870 as one of the first engineering schools in the nation. The department mission is to produce graduates with a broad-based foundation in fundamental engineering principles and liberal arts together with the depth of disciplinary knowledge needed to succeed in a career in mechanical engineering or a related field, including a wide variety of advanced technological and management careers. This is accomplished through a broad-based Core Curriculum of applied sciences, engineering sciences, design, management, and the humanities, coupled with a long-standing honor system.

For more information, please click here

Contacts:
Stevens Institute of Technology
Christine del Rosario
201-216-5561

Copyright © Stevens Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

UC research partnership explores how to best harness solar power March 2nd, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Important step towards quantum computing: Metals at atomic scale March 2nd, 2015

New Hopes for Treatment of Intestine Cancer by Edible Nanodrug March 2nd, 2015

Self Assembly

Nanotubes self-organize and wiggle: Evolution of a nonequilibrium system demonstrates MEPP February 10th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Revealed: How bacteria drill into our cells and kill them December 2nd, 2014

Live Images from the Nano-cosmos: Researchers watch layers of football molecules grow November 5th, 2014

Nanomedicine

New Hopes for Treatment of Intestine Cancer by Edible Nanodrug March 2nd, 2015

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Novel Method to Determine Optical Purity of Drug Components March 1st, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Nanoelectronics

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Ultra-thin nanowires can trap electron 'twisters' that disrupt superconductors February 24th, 2015

Improved fire detection with new ultra-sensitive, ultraviolet light sensor February 17th, 2015

Nanotechnology facility planned in Lund, Sweden: A production facility for start-ups in the field of nanotechnology may be built in the Science Village in Lund, a world-class research and innovation village that is also home to ESS, the European Spallation Source February 15th, 2015

Announcements

UC research partnership explores how to best harness solar power March 2nd, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Important step towards quantum computing: Metals at atomic scale March 2nd, 2015

New Hopes for Treatment of Intestine Cancer by Edible Nanodrug March 2nd, 2015

Energy

UC research partnership explores how to best harness solar power March 2nd, 2015

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Magnetic nanoparticles enhance performance of solar cells X-ray study points the way to higher energy yields February 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE