Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanowire Research from Stevens Makes Cover of Applied Physics Letters

Abstract:
n article by Stevens Institute of Technology researchers featured as the cover page of Applied Physics Letters Volume 98, Issue 7 represents a step forward in techniques for the arrangement of nanowires.

Nanowire Research from Stevens Makes Cover of Applied Physics Letters

Hoboken, NJ | Posted on February 25th, 2011

Professors Dr. Chang-Hwan Choi and Dr. Eui-Hyeok (EH) Yang, and graduate students Wei Xu, Rajesh Leeladhar, and Yao-Tsan Tsai, focused on nanowires, structures that are mere nanometers in diameter but have enormous potential in nanotechnology to create tiny circuits that would make possible nanoelectronics, nanophotonics, and nanobiotechnology. Such devices could forever change the way we harness energy, communicate, and treat disease.

"This highly promising research can lead to the development of reliable nano-actuators which in turn stand to benefit fields and applications as diverse as biomaterials, nano robots, artificial muscles, and high frequency nano antenna applications and is an affirmation of the cutting edge research that is taking place in the Micro/Nano Devices Laboratory," says Dr. Constantin Chassapis, Deputy Dean of the Charles V. Schaefer, Jr. School of Engineering and Science and Department Director of Mechanical Engineering.

The precise arrangement of nanowires on a large scale is crucial for any practical application. However, many current techniques for the controllable arrangement of nanowires suffer limitations.

The article, entitled, "Evaporative self-assembly of nanowires on superhydrophobic surfaces of nanotip latching surfaces," reports a technique that is highly effective in assembling nanowires. A colloid droplet of nanowires (i.e., nanowires dispersed in a water droplet) is placed on a nano-engineered superhydrophobic surface. As the droplet evaporates, two forces cause the nanowires to self-assemble on the specially-designed surface: hydrodynamic forces inside the droplet and capillary forces of the receding contact line of the droplet. Simple and convenient, the new self-assembly technique offers a high yield rate, improving the controlled arrangement of nanowires which may be used in nanodevices.

Dr. Chang-Hwan Choi
Dr. Choi is an Assistant Professor of Mechanical Engineering at Stevens, and director of the Nano and Microfluidics Laboratory. His research focuses on developing simple and efficient methods of nanofabrication that display superior pattern regularity, size, and shape over a large area. Such research improves upon standard lithography methods, which do not cover an area large enough to successfully employ not only electronic but also non-electronic applications. Dr. Choi was honored with the prestigious 2010 Young Investigator Program (YIP) Award from the Office of Naval Research (ONR).

Dr. EH Yang
Dr. Yang is an Associate Professor of Mechanical Engineering at Stevens, as well as director of the Nanoelectronics Laboratory and multi-user Micro Device Laboratory. Dr. Yang's research focuses on utilizing engineered low-dimensional carbon materials and nanostructures for realizing nanosensors/actuators and nanoelectronics/optoelectronics devices. He has published a number of articles, including recent articles in Nano Letters, Langmuir, and Applied Physics Letters. Recently he secured an NSF grant to acquire a Nanoimprint Lithography System for Stevens Micro Device Lab.

####

About Stevens Institute of Technology
The Department of Mechanical Engineering confidently addresses the challenges facing engineering now and into the future, yet remains true to the vision of the founders of Stevens Institute in 1870 as one of the first engineering schools in the nation. The department mission is to produce graduates with a broad-based foundation in fundamental engineering principles and liberal arts together with the depth of disciplinary knowledge needed to succeed in a career in mechanical engineering or a related field, including a wide variety of advanced technological and management careers. This is accomplished through a broad-based Core Curriculum of applied sciences, engineering sciences, design, management, and the humanities, coupled with a long-standing honor system.

For more information, please click here

Contacts:
Stevens Institute of Technology
Christine del Rosario
201-216-5561

Copyright © Stevens Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Self Assembly

Searching for a nanotech self-organizing principle May 1st, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Brookhaven's Oleg Gang Named a Battelle 'Inventor of the Year': Recognized for work using DNA to guide and regulate the self-assembly of nanoparticles into clusters and arrays with controllable properties April 25th, 2016

Researchers develop new semiconducting polymer for forthcoming flexible electronics April 21st, 2016

Nanomedicine

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanoscale Trojan horses treat inflammation May 24th, 2016

Nanoelectronics

Researchers demonstrate size quantization of Dirac fermions in graphene: Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices May 20th, 2016

Graphene: A quantum of current - When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene May 20th, 2016

New type of graphene-based transistor will increase the clock speed of processors: Scientists have developed a new type of graphene-based transistor and using modeling they have demonstrated that it has ultralow power consumption compared with other similar transistor devices May 19th, 2016

Self-healing, flexible electronic material restores functions after many breaks May 17th, 2016

Announcements

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Energy

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Technique improves the efficacy of fuel cells: Research demonstrates a new phase transition from metal to ionic conductor May 18th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic