Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Binghamton University nanoscientist chosen for the Air Force's Young Investigator Research Program

Binghamton University nanoscientist, Changhong Ke, is working on low-density, high-strength materials that could allow the Air Force to reduce the weight of vehicles such as fighter planes and spacecraft.

Credit: Jonathan Cohen
Binghamton University nanoscientist, Changhong Ke, is working on low-density, high-strength materials that could allow the Air Force to reduce the weight of vehicles such as fighter planes and spacecraft.

Credit: Jonathan Cohen

Abstract:
Competition for the awards is stiff, with fewer than 20 percent of applicants receiving funding.

Ke, who joined the mechanical engineering department at Binghamton in 2007, received his doctorate from Northwestern University and had a post-doctoral fellowship at Duke University. He did his undergraduate work at Beijing Institute of Technology.

Binghamton University nanoscientist chosen for the Air Force's Young Investigator Research Program

Binghamton, NY | Posted on February 24th, 2011

His studies focus on two materials, both of which have hollow, tube-like structures. One is made of carbon and the other is made of boron nitride, which is far less common.

Both are called nanotubes because their wall thickness and diameter can be measured in nanometers. Several thousand of these tubes put together would still be thinner than a single strand of your hair.

"They are both light and strong," Ke said. "They have similar mechanical properties but different electrical properties. The carbon nanotubes can be conductors or semiconductors, while the boron nitride tubes are insulators. Both dissipate heat quickly, which is good for aerospace applications."

For practical purposes, these tiny tubes would be wound together like ropes or be mixed into polymers, such as epoxy, to form composites. The resulting fibers are quite strong, but it's not well understood how they'll respond to various kinds of stress, Ke said. How strong is the rope? How strong are the individual structures? What happens when the ropes get thick enough that some fibers are encased by other fibers? What role does the binding interface among the tubes play in the strength of the bundle? And how does the interface between these high-strength fibers and polymers contribute to their reinforcing effects in the polymer composites?

Ke plans to investigate not only how carbon nanotubes and boron nitride nanotubes perform individually, but also what happens when small bundles are made from the two nanomaterials together. What happens at the places where the two touch? How strong is the interface between them?

Ke relies on unique instrumentation to perform these tests, including a special tool he installed in his laboratory on an advanced electron microscope. This "finger" has a very sharp tip that allows him to grab one nanotube at a time and move it precisely.

"Our first step is to measure the interfacial strength, and then we'll focus on how to improve the strength of these bundles and polymer composites," he said. "That will help in the design and manufacture of new materials."

####

About Binghamton University
In a little over 60 years, Binghamton University has built a reputation as a world-class institution that combines a broadly interdisciplinary, international education with one of the most vibrant research programs in the nation.

Binghamton is proud to be ranked among the elite public universities in the nation for challenging our students academically, not financially. The result is a unique, best-of-both-worlds college experience.

For more information, please click here

Contacts:
Gail Glover

607-777-2174

Copyright © Binghamton University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers from the UCA, key players in a pioneering study that may explain the origin of several digestive diseases June 30th, 2015

Oxford Instruments’ TritonTMXL Cryofree dilution refrigerator selected for the Oxford NQIT Quantum Technology Hub project June 30th, 2015

Visible Light-Sensitive Photocatalysts Used for Purification of Contaminated Water in Iran June 30th, 2015

June 29th, 2015

Academic/Education

Oxford Instruments’ TritonTMXL Cryofree dilution refrigerator selected for the Oxford NQIT Quantum Technology Hub project June 30th, 2015

Rice University boots up powerful microscopes: New electron microscopes will capture images at subnanometer resolution June 29th, 2015

Six top Catalan research centres constitute ‘The Barcelona Institute of Science and Technology’ to pursue a joint scientific endeavour June 27th, 2015

Lancaster University revolutionary quantum technology research receives funding boost June 22nd, 2015

Materials/Metamaterials

Green Chemistry Methods Used in Iran to Produce Zinc Oxide Nanoparticles June 27th, 2015

Spain nanotechnology featured at NANO KOREA 2015 June 26th, 2015

Dais Analytic Unveils New Version of Aqualyte Membrane Technology: Updates to the Basis of the Company's Industry-Changing Nanotechnology Designed to Strengthen Position in Global Air, Energy, and Water Markets June 26th, 2015

Iranian Researchers Synthesize Nanostructures with Controlled Shape, Structure June 25th, 2015

Announcements

Researchers from the UCA, key players in a pioneering study that may explain the origin of several digestive diseases June 30th, 2015

Oxford Instruments’ TritonTMXL Cryofree dilution refrigerator selected for the Oxford NQIT Quantum Technology Hub project June 30th, 2015

Visible Light-Sensitive Photocatalysts Used for Purification of Contaminated Water in Iran June 30th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

World’s 1st Full-Color, Flexible, Skin-Like Display Developed at UCF June 24th, 2015

Physicists fine-tune control of agile exotic materials: Tunable hybrid polaritons realized with graphene layer on hexagonal boron nitride June 24th, 2015

Robust new process forms 3-D shapes from flat sheets of graphene June 23rd, 2015

Lancaster University revolutionary quantum technology research receives funding boost June 22nd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project