Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Binghamton University nanoscientist chosen for the Air Force's Young Investigator Research Program

Binghamton University nanoscientist, Changhong Ke, is working on low-density, high-strength materials that could allow the Air Force to reduce the weight of vehicles such as fighter planes and spacecraft.

Credit: Jonathan Cohen
Binghamton University nanoscientist, Changhong Ke, is working on low-density, high-strength materials that could allow the Air Force to reduce the weight of vehicles such as fighter planes and spacecraft.

Credit: Jonathan Cohen

Abstract:
Competition for the awards is stiff, with fewer than 20 percent of applicants receiving funding.

Ke, who joined the mechanical engineering department at Binghamton in 2007, received his doctorate from Northwestern University and had a post-doctoral fellowship at Duke University. He did his undergraduate work at Beijing Institute of Technology.

Binghamton University nanoscientist chosen for the Air Force's Young Investigator Research Program

Binghamton, NY | Posted on February 24th, 2011

His studies focus on two materials, both of which have hollow, tube-like structures. One is made of carbon and the other is made of boron nitride, which is far less common.

Both are called nanotubes because their wall thickness and diameter can be measured in nanometers. Several thousand of these tubes put together would still be thinner than a single strand of your hair.

"They are both light and strong," Ke said. "They have similar mechanical properties but different electrical properties. The carbon nanotubes can be conductors or semiconductors, while the boron nitride tubes are insulators. Both dissipate heat quickly, which is good for aerospace applications."

For practical purposes, these tiny tubes would be wound together like ropes or be mixed into polymers, such as epoxy, to form composites. The resulting fibers are quite strong, but it's not well understood how they'll respond to various kinds of stress, Ke said. How strong is the rope? How strong are the individual structures? What happens when the ropes get thick enough that some fibers are encased by other fibers? What role does the binding interface among the tubes play in the strength of the bundle? And how does the interface between these high-strength fibers and polymers contribute to their reinforcing effects in the polymer composites?

Ke plans to investigate not only how carbon nanotubes and boron nitride nanotubes perform individually, but also what happens when small bundles are made from the two nanomaterials together. What happens at the places where the two touch? How strong is the interface between them?

Ke relies on unique instrumentation to perform these tests, including a special tool he installed in his laboratory on an advanced electron microscope. This "finger" has a very sharp tip that allows him to grab one nanotube at a time and move it precisely.

"Our first step is to measure the interfacial strength, and then we'll focus on how to improve the strength of these bundles and polymer composites," he said. "That will help in the design and manufacture of new materials."

####

About Binghamton University
In a little over 60 years, Binghamton University has built a reputation as a world-class institution that combines a broadly interdisciplinary, international education with one of the most vibrant research programs in the nation.

Binghamton is proud to be ranked among the elite public universities in the nation for challenging our students academically, not financially. The result is a unique, best-of-both-worlds college experience.

For more information, please click here

Contacts:
Gail Glover

607-777-2174

Copyright © Binghamton University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Academic/Education

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

COD Grad Begins Postdoctoral Fellow at Harvard University: Marsela Jorgolli's Passion for Physics Has Led to a Decade of Academic Research That Continues at Harvard University as a Postdoctoral Fellow February 2nd, 2016

Heriot-Watt's Institute of Photonics & Quantum Sciences uses the Deben Microtest 2 kN tensile stage to characterise ceramics and engineering plastics January 21st, 2016

Multiple uses for the JPK NanoWizard AFM system in the Smart Interfaces in Environmental Nanotechnology Group at the University of Illinois at Urbana-Champaign January 20th, 2016

Materials/Metamaterials

A metal that behaves like water: Researchers describe new behaviors of graphene February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Chemical cages: New technique advances synthetic biology February 10th, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Silicon chip with integrated laser: Light from a nanowire: Nanolaser for information technology February 12th, 2016

NSS Pays Tribute to Late NSS Governor Dr. Marvin Minsky, A Pioneer in Artificial Intelligence February 11th, 2016

Scientists take nanoparticle snapshots February 10th, 2016

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic