Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > A Nano-Solution to Global Water Problem: Nanomembranes Could Filter Bacteria

Javid Rzayev (pictured) and Justin Bolton led a team that synthesized a block copolymer nanomembrane, which contains pores greater than 50 nanometers in diameter -- a record size for membranes of this kind.
Javid Rzayev (pictured) and Justin Bolton led a team that synthesized a block copolymer nanomembrane, which contains pores greater than 50 nanometers in diameter -- a record size for membranes of this kind.

Abstract:
New nanomaterials research from the University at Buffalo could lead to new solutions for an age-old public health problem: how to separate bacteria from drinking water.

A Nano-Solution to Global Water Problem: Nanomembranes Could Filter Bacteria

Buffalo, NY | Posted on February 24th, 2011

To the naked eye, both water molecules and germs are invisible -- objects so tiny they are measured by the nanometer, a unit of length about 100,000 times thinner than the width of a human hair.

But at the microscopic level, the two actually differ greatly in size. A single water molecule is less than a nanometer wide, while some of the most diminutive bacteria are a couple hundred.

Working with a special kind of polymer called a block copolymer, a UB research team has synthesized a new kind of nanomembrane containing pores about 55 nanometers in diameter -- large enough for water to slip through easily, but too small for bacteria.

The pore size is the largest anyone has achieved to date using block copolymers, which possess special properties that ensure pores will be evenly spaced, said Javid Rzayev, the UB chemist who led the study. The findings were published online on Jan. 31 in Nano Letters and will appear in the journal's print edition later this year, with UB chemistry graduate student Justin Bolton as lead author.

"These materials present new opportunities for use as filtration membranes," said Rzayev, an assistant professor of chemistry. "Commercial membranes have limitations as far as pore density or uniformity of the pore size. The membranes prepared from block copolymers have a very dense distribution of pores, and the pores are uniform."

"There's a lot of research in this area, but what our research team was able to accomplish is to expand the range of available pores to 50 nanometers in diameter, which was previously unattainable by block-copolymer-based methods," Rzayev continued. "Making pores bigger increases the flow of water, which will translate into cost and time savings. At the same time, 50 to 100 nm diameter pores are small enough not to allow any bacteria through. So, that is a sweet spot for this kind of application."

The new nanomembrane owes its special qualities to the polymers that scientists used to create it. Block copolymers are made up of two polymers that repel one another but are "stitched" together at one end to form the single copolymer.

When many block copolymers are mixed together, their mutual repulsion leads them to assemble in a regular, alternating pattern. The result of that process, called self-assembly, is a solid nanomembrane comprising two different kinds of polymers.

To create evenly spaced pores in the material, Rzayev and colleagues simply removed one of the polymers. The pores' relatively large size was due to the unique architecture of the original block copolymers, which were made from bottle-brush molecules that resemble round hair brushes, with molecular "bristles" protruding all the way around a molecular backbone.

The research on nanomembranes is part of a larger suite of studies Rzayev is conducting on bottle-brush molecules using a National Science Foundation CAREER award, the foundation's most prestigious award for junior investigators. His other work includes the fabrication of organic nanotubes for drug delivery, and the assembly of layered, bottle-brush polymers that reflect visible light like the wings of a butterfly do.

####

About University at Buffalo
The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

For more information, please click here

Contacts:
Charlotte Hsu

716-645-4655

Copyright © University at Buffalo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Discoveries

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Announcements

Iran to Hold 3rd Int'l Engineering Materials, Metallurgy Conference October 25th, 2014

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Water

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

New Nanocomposites Help Elimination of Toxic Dyes October 15th, 2014

Fast, cheap nanomanufacturing: Arrays of tiny conical tips that eject ionized materials could fabricate nanoscale devices cheaply October 4th, 2014

Production of Filters for Separation of Water from Petroleum Products in Iran October 1st, 2014

New-Contracts/Sales/Customers

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

Dyesol Signs Letter of Intent with Tata Steel October 13th, 2014

HZO Teams With Deutsche Telekom to Unveil the Waterproof Tolino Vision 2 eReader: The New HZO Protected eReader Ushers in a New Era of Waterproof Electronics, Providing a Seamless User Experience Without the Risk of Using Port Doors and Mechanical Seals October 10th, 2014

Fullerex: Talga Resources Joins INSCX™ Exchange September 4th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE