Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Modified RNA Creates Stable Therapeutic Nanoparticles

Abstract:
For years, RNA has seemed an elusive tool in nanotechnology research. While easily manipulated in the laboratory, RNA is susceptible to quick destruction in the body when confronted with a commonly found enzyme. "The enzyme RNase cuts RNA randomly into small pieces, very efficiently and within minutes," explains Peixuan Guo of the University of Cincinnati.

Modified RNA Creates Stable Therapeutic Nanoparticles

Bethesda, MD | Posted on February 23rd, 2011

But by replacing a chemical group in the macromolecule, Dr. Guo says he and fellow researchers have found a way to bypass RNase and create stable three-dimensional configurations of RNA, greatly expanding the possibilities for RNA in nanotechnology. Dr. Guo and his colleagues published their findings in the journal ACS Nano. Dr. Guo is the co-principal investigator of the Cancer Nanotechnology Platform Partnership at the University of Cincinnati, one of 12 such partnerships funded by the National Cancer Institute.

In their work, Dr. Guo and his colleagues focused on the ribose rings that, together with alternating phosphate groups, form the backbone of RNA. By changing one section of the ribose ring, Dr. Guo and his team altered the structure of the molecule, making it unable to bind with RNase and able to resist degradation. "RNase interaction with RNA requires a match of structural conformation," he explained. "When RNA conformation has changed, the RNase cannot recognize RNA and the binding becomes an issue." While previous researchers have shown this alteration makes RNA stable in a double helix, Dr. Guo says that they did not study its potential to affect the folding of RNA into a three-dimensional structure necessary for nanotechnology.

After creating the RNA nanoparticle, Guo and his colleagues successfully used it to power the DNA packaging nanomotor of bacteriophage phi29, a virus that infects bacteria. "We found that the modified RNA can fold into its 3-D structure appropriately, and can carry out its biological functions after modification," says Guo. "Our results demonstrate that it is practical to produce RNase-resistant, biologically active, and stable RNA for application in nanotechnology."

Because stable RNA molecules can be used to assemble a variety of nanostructures, Guo says they are an ideal tool to deliver targeted therapies to cancerous or viral-infected cells. "RNA nanoparticles can be fabricated with a level of simplicity characteristic of DNA while possessing versatile structure and catalytic function similar to that of proteins. With this RNA modification, hopefully we can open new avenues of study in RNA nanotechnology."

####

About The National Cancer Institute (NCI)
The NCI Alliance for Nanotechnology in Cancer is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat, and prevent cancer. Through its programs and initiatives, the Alliance is committed to building a community of researchers dedicated to using nanotechnology to advance the fight against cancer.

As part of the Center for Strategic Scientific Initiatives, the Alliance for Nanotechnology in Cancer works in concert with other NCI advanced technology initiatives to provide the scientific foundation and team science that is required to transform cancer research and care.

For more information, please click here

Contacts:
National Cancer Institute
Center for Strategic Scientific Initiatives
NCI Office of Cancer Nanotechnology Research (OCNR)
Building 31, Room 10A52
31 Center Drive, MSC 2580
Bethesda, MD 20892-2580
Telephone: (301) 451-8983

Copyright © The National Cancer Institute (NCI)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - "Fabrication of Stable and RNasae-Resistant RNA Nanoparticles Active in Gearing the Nanomotors for Viral DNA Packaging Engineering of Self-Assembled Nanoparticle Platform for Precisely Controlled Combination Drug Therapy."

Related News Press

News and information

Oxford Instruments Asylum Research and McGill University Announce the McGill AFM Summer School and Workshop, May 12-13, 2016 May 4th, 2016

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

FEI Launches Apreo Industry-Leading Versatile, High-Performance SEM: The Apreo SEM provides high-resolution surface information with excellent contrast, and the flexibility to accommodate a large range of samples, applications and conditions May 4th, 2016

Nanomedicine

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

Nuclear pores captured on film: Using an ultra fast-scanning atomic force microscope, researchers from the University of Basel have filmed 'living' nuclear pore complexes at work for the first time May 3rd, 2016

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

Discoveries

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls May 3rd, 2016

Nuclear pores captured on film: Using an ultra fast-scanning atomic force microscope, researchers from the University of Basel have filmed 'living' nuclear pore complexes at work for the first time May 3rd, 2016

Announcements

Oxford Instruments Asylum Research and McGill University Announce the McGill AFM Summer School and Workshop, May 12-13, 2016 May 4th, 2016

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

FEI Launches Apreo Industry-Leading Versatile, High-Performance SEM: The Apreo SEM provides high-resolution surface information with excellent contrast, and the flexibility to accommodate a large range of samples, applications and conditions May 4th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic