Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Early Tests Find Nanoshell Therapy Effective Against Brain Cancer

Abstract:
Rice University bioengineers and physician-scientists at Baylor College of Medicine and Texas Children's Hospital have successfully destroyed tumors of human brain cancer cells in the first animal tests of a minimally invasive treatment that zaps glioma tumors with heat. The tests involved nanoshells, light-activated nanoparticles that are designed to destroy tumors with heat and avoid the unwanted side effects of drug and radiation therapies.

Early Tests Find Nanoshell Therapy Effective Against Brain Cancer

Bethesda, MD | Posted on February 23rd, 2011

Jennifer West, from Rice, and Susan Blaney, from Baylor, led the team that conducted this research. The investigators published the results of their study in the Journal of Neuro-Oncology.

In their paper, the researchers reported that more than half of the animals that received the nanoshell treatment for glioma tumors had no signs of cancer more than three months after treatment. "This first round of in vivo animal tests suggests that photothermal therapy with nanoshells may one day be a viable option for glioma patients," said Dr. West. She cautioned that follow-up work in the laboratory is needed before any human testing of the therapy can begin, adding that human clinical trials of nanoshell phototherapy for glioma are likely at least a year away.

Glioma is among the most aggressive and difficult-to-treat of all brain cancers. Fewer than five percent of glioma patients survive beyond five years. The disease is particularly difficult to treat because glioma tumors are often highly invasive and inoperable.

The researchers injected the mice with gold nanoshells and waited 24 hours for the nanoparticles to accumulate in the tumors. Laser-generated near-infrared light, which passes safely through biological tissues was shined on the tumor for three minutes. The nanoshells converted the laser light into tumor-killing heat. All seven animals that received the nanoshell treatment responded, but cancer returned in three. The other four remained cancer-free 90 days after treatment.

"The results of this study are encouraging, and we are cautiously optimistic that this process may bring us closer to finding a cure for glioma," said Dr. Blaney. "This is very exciting, especially given the poor prognosis of the disease and the importance of finding brain tumor treatment alternatives that have minimal side effects."

Gold nanoshells were invented in the mid-1990s by Naomi Halas, a colleague of Dr. West's at Rice. Dr. Halas is the co-principal investigator of the Cancer Nanotechnology Platform Partnership at Rice, one of 12 funded by the National Cancer Institute. Nanoshells are like tiny malted milk balls that are coated with gold rather than chocolate. Their core is non-conducting, and by varying the size of the core and thickness of the shell, researchers can tune them to respond to different wavelengths of light. Houston-based biomedical firm Nanospectra Biosciences, which holds the license for medical use of Rice's nanoshell technology, began the first human clinical trial of nanoshell phototherapy in 2008. Dr. West, a co-founder and director of Nanospectra Biosciences, said the new glioma study is part of a larger ongoing effort within the Texas Medical Center to adapt nanoshell phototherapy for use against a variety of cancers.

####

About The National Cancer Institute (NCI)
The NCI Alliance for Nanotechnology in Cancer is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat, and prevent cancer. Through its programs and initiatives, the Alliance is committed to building a community of researchers dedicated to using nanotechnology to advance the fight against cancer.

As part of the Center for Strategic Scientific Initiatives, the Alliance for Nanotechnology in Cancer works in concert with other NCI advanced technology initiatives to provide the scientific foundation and team science that is required to transform cancer research and care.

For more information, please click here

Contacts:
National Cancer Institute
Center for Strategic Scientific Initiatives
NCI Office of Cancer Nanotechnology Research (OCNR)
Building 31, Room 10A52
31 Center Drive, MSC 2580
Bethesda, MD 20892-2580
Telephone: (301) 451-8983

Copyright © The National Cancer Institute (NCI)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - "Nanoshell-mediated photothermal therapy improves survival in a murine glioma model."

Related News Press

News and information

Oxford Instrumentsí Triton Cryofree dilution refrigerator selected by Oxford University for developing scalable quantum nanodevices September 2nd, 2015

JEOL Introduces New Best-in-Class Field Emission SEM September 2nd, 2015

TCL and QD Vision Demonstrate the Future of Wide Color Gamut Television at IFA: Color IQ Based Display is the First Commercially-Branded Television to Present Over 90% of ITU Rec. 2020 Color Gamut September 2nd, 2015

Atomic Force Microscopes from Asylum Research Guide the Development of Thin Film Deposition and Etch Processes September 2nd, 2015

Nanomedicine

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Using DNA origami to build nanodevices of the future September 1st, 2015

Efficiency of Nanodrug Containing Antibiotics in Treatment of Infectious Diseases Evaluated August 31st, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Discoveries

For 2-D boron, it's all about that base: Rice University theorists show flat boron form would depend on metal substrates September 2nd, 2015

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

Announcements

For 2-D boron, it's all about that base: Rice University theorists show flat boron form would depend on metal substrates September 2nd, 2015

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic