Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Carbon nanotache with 3D Symmetry

Abstract:
Researchers at the University of Surrey show the controlled synthesis of nanomaterials by subjecting pure organic molecular gas to high temperatures and pressures that allow symmetry breaking events to create the different carbon nanostructures. Spheres, nanotubes and mirrored spirals can be created under the appropriate isovolumetric conditions that show the versatility of this unique growth system. The report is published in the January 2011 issue of the premiere journal in nanotechnology, Nano Letters.

Carbon nanotache with 3D Symmetry

Surrey, UK | Posted on February 23rd, 2011

Self-organisation of matter is essential for natural pattern formation, chemical synthesis, as well as modern material science. Mechanisms governing natural formation of symmetric patterns have long intrigued scientists and remain central to modern science from attempts to understand spirals and twists of climbing plants to the studies of bacterial macrofibers and DNA. Self-assembly of atoms and molecules is the key to understanding the natural shape formation and is elemental to the production of modern materials, such as silicon, synthetic polymers, and various nano- and microstructures.

Dr Hidetsugu Shiozawa, of the Advanced Technology Institute (ATI) at the University of Surrey, said: "The work represents a concept to experiment with self-assembly process and demonstrates how morphological symmetry of nano- and microstructures can be controlled. The study of such physical phenomena helps us understand why certain symmetry of structure emerges amongst others, and how this is correlated with physical quantities of thermodynamic equilibrium such as temperature and pressure."

Professor Ravi Silva, FREng, Director of the ATI and co-author, indicated: "The creation of new technologies and businesses are highly dependent on this ability to create designer materials of the highest quality. The UK is renowned for its highly creative and innovative research force, for which this is a prime example. To create a strong manufacturing base, we must back high quality research that has potential to create new markets and novel products such as those enabled by these symmetric carbon nanostructures. It will lead to transformative technologies."

####

For more information, please click here

Contacts:
University of Surrey
Guildford, Surrey
GU2 7XH
United Kingdom
+44 (0)1483 300800

Copyright © University of Surrey

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The work appears in: DOI: 10.1021/nl1032793

Related News Press

News and information

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Physics

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Discoveries

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Materials/Metamaterials

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Inside tiny tubes, water turns solid when it should be boiling: MIT researchers discover astonishing behavior of water confined in carbon nanotubes November 30th, 2016

From champagne bubbles, dance parties and disease to new nanomaterials: Understanding nucleation of protein filaments might help with Alzheimer's Disease and type 2 Diabetes November 24th, 2016

Uncovering the secrets of friction on graphene: Sliding on flexible graphene surfaces has been uncharted territory until now November 23rd, 2016

Announcements

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project