Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > FEI and CEA-Leti Enter Joint Agreement to Characterize Advanced Semiconductor Materials

Abstract:
CEA-Leti and FEI expect to address technical roadblocks faced by the industry in moving to 22nm IC devices

FEI and CEA-Leti Enter Joint Agreement to Characterize Advanced Semiconductor Materials

Hillsboro, OR and Grenoble, France | Posted on February 22nd, 2011

FEI (NASDAQ: FEIC) and CEA-Leti today announced the companies have entered into a three year agreement to characterize advanced semiconductor materials for the 22nm technology node and beyond. European-based CEA-Leti, with its two partners on the NanoCharacterization Platform of MINATEC Campus, CEA-Liten (new materials for new energies) and CEA-INAC (Nanoscience Institute), will apply their expertise in holography and nanobeam diffraction. FEI will provide advanced nanobeam diffraction technology with its Titan™ scanning transmission electron microscope (S/TEM), the world's most powerful, commercially-available microscope. The companies will measure strain changes in semiconductor structures.

"The research will focus on two important areas: use of holography with the Titan's unique XFEG electron source to improve the sensitivity of dopant profiling, and the use of nanobeam diffraction techniques to measure changes in strain and other crystallographic parameters," said George Scholes, vice president and general manager for FEI's S/TEM product line. "With the Titan, FEI is a leader in these areas and we look forward to partnering with CEA-Leti on their unique platform for characterization and nanoscale in continuing to advance the technology."

"We must improve the sensitivity, accuracy and throughput of dopant profiling in order to continue supporting shrinking device dimensions. And a better understanding of the effects of strain is critical in the development of higher performance IC devices as we continue to push the technology to the 22nm technology node and beyond," stated Rudy Kellner, vice president and general manager of FEI's Electronics Division.

According to Laurent Malier, CEO of CEA-Leti, "We chose to work with FEI on this three year research project, not only because of their powerful, commercially-available microscope, but also because of their special expertise in nanobeam diffraction applications. Together, we expect to address several critical technical roadblocks facing the semiconductor industry as it continues to push the device size and performance envelope and also challenges in the characterization of materials used in nanoelectronics and more generally for nanosciences."

For more information, please visit www.fei.com or www.leti.fr

FEI Safe Harbor Statement

This news release contains forward-looking statements that include statements regarding the performance capabilities and benefits of the Titan S/TEM. Factors that could affect these forward-looking statements include but are not limited to failure of the product or technology to perform as expected and achieve anticipated results, unexpected technology problems and our ability to manufacture, ship and deliver the tools or software as expected. Please also refer to our Form 10-K, Forms 10-Q, Forms 8-K and other filings with the U.S. Securities and Exchange Commission for additional information on these factors and other factors that could cause actual results to differ materially from the forward-looking statements. FEI assumes no duty to update forward-looking statements.

####

About FEI
FEI (Nasdaq: FEIC) is a leading diversified scientific instruments company. It is a premier provider of electron- and ion-beam microscopes and tools for nanoscale applications across many industries: industrial and academic materials research, life sciences, semiconductors, data storage, natural resources and more. With more than 60 years of technological innovation and leadership, FEI has set the performance standard in transmission electron microscopes (TEM), scanning electron microscopes (SEM) and DualBeams™, which combine a SEM with a focused ion beam (FIB). FEI’s imaging systems provide 3D characterization, analysis and modification/prototyping with resolutions down to the sub-Ångström (one-tenth of a nanometer) level. FEI’s NanoPorts in North America, Europe and Asia provide centers of technical excellence where its world-class community of customers and specialists collaborate. Headquartered in Hillsboro, Ore., USA, FEI has approximately 1800 employees and sales and service operations in more than 50 countries around the world. More information can be found at: www.fei.com.

About CEA-Leti
CEA is a French research and technology organisation, with activities in four main areas: energy, information technologies, healthcare technologies and defence and security. Within CEA, the Laboratory for Electronics & Information Technology (CEA-Leti) works with companies in order to increase their competitiveness through technological innovation and transfers. CEA-Leti is focused on micro and nanotechnologies and their applications, from wireless devices and systems, to biology and healthcare or photonics. Nanoelectronics and microsystems (MEMS) are at the core of its activities. As a major player in MINATEC campus, CEA-Leti operates 8,000-m² state-of-the-art clean rooms, on 24/7 mode, on 200mm and 300mm wafer standards. With 1,200 employees, CEA-Leti trains more than 150 Ph.D. students and hosts 200 assignees from partner companies. Strongly committed to the creation of value for the industry, CEA-Leti puts a strong emphasis on intellectual property and owns more than 1,500 patent families. For more information, visit www.leti.fr

For more information, please click here

Contacts:
Sandy Fewkes, Principal (FEI media contact)
MindWrite Communications, Inc
+1 408 224 4024


FEI Company
Fletcher Chamberlin (investors and analysts)
Investor Relations
+1 503 726 7710


CEA-Leti
Thierry Bosc
+33 4 38 78 31 95

Copyright © FEI

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Chip Technology

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

New devices based on rust could reduce excess heat in computers: Physicists explore long-distance information transmission in antiferromagnetic iron oxide September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry September 14th, 2018

Nanoelectronics

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry September 14th, 2018

Laser sintering optimized for printed electronics: New study sheds (laser) light on the best means of laying down thin-film circuitry September 13th, 2018

September 5th, 2018

Rice U. lab probes molecular limit of plasmonics: Optical effect detailed in organic molecules with fewer than 50 atoms September 5th, 2018

Announcements

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Tools

Carbon nanodots do an ultrafine job with in vitro lung tissue: New experiments highlight the role of charge and size when it comes to carbon nanodots that mimic the effect of nanoscale pollution particles on the human lung. September 12th, 2018

Terahertz spectroscopy enters the single-molecule regime September 7th, 2018

Mirrorcle Demonstrates MEMS-based Programmable Light Source at CES and PW18 August 30th, 2018

Stress-free ALD from Picosun August 28th, 2018

Alliances/Trade associations/Partnerships/Distributorships

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Leti & EFI Aim to Dramatically Improve Reliability & Speed of Low-Cost Electronic Devices for Autos: Project Will Extend Model Predictive Control Technique to Microcontrollers, Digital Signal Processors and Other Devices that Lack Powerful Computation Capabilities September 18th, 2018

Silvaco, Purdue team up to bring scalable atomistic TCAD solutions for next generation semiconductor devices and materials August 24th, 2018

Leti & CMP Announce World’s First Multi-Project-Wafer Service with Integrated Silicon OxRAM: Oxide-Based Resistive Ram Memory Platform Development for Backend Memories To Offer Non-Volatility Associated with Embedded Designs August 2nd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project