Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > MIT engineers design new nanoparticle that could lead to vaccines for HIV, malaria, other diseases

Abstract:
MIT engineers have designed a new type of nanoparticle that could safely and effectively deliver vaccines for diseases such as HIV and malaria.

by Anne Trafton, MIT News Office

MIT engineers design new nanoparticle that could lead to vaccines for HIV, malaria, other diseases

Cambridge, MA | Posted on February 22nd, 2011

The new particles, described in the Feb. 20 issue of Nature Materials, consist of concentric fatty spheres that can carry synthetic versions of proteins normally produced by viruses. These synthetic particles elicit a strong immune response comparable to that produced by live virus vaccines but should be much safer, says Darrell Irvine, author of the paper and an associate professor of materials science and engineering and biological engineering.

Such particles could help scientists develop vaccines against cancer as well as infectious diseases. In collaboration with scientists at the Walter Reed Army Institute of Research, Irvine and his students are now testing the nanoparticles' ability to deliver an experimental malaria vaccine in mice.

Vaccines protect the body by exposing it to an infectious agent that primes the immune system to respond quickly when it encounters the pathogen again. In many cases, such as with the polio and smallpox vaccines, a dead or disabled form of the virus is used. Other vaccines, such as the diphtheria vaccine, consist of a synthetic version of a protein or other molecule normally made by the pathogen.

When designing a vaccine, scientists try to provoke at least one of the human body's two major players in the immune response: T cells, which attack body cells that have been infected with a pathogen; or B cells, which secrete antibodies that target viruses or bacteria present in the blood and other body fluids.

For diseases in which the pathogen tends to stay inside cells, such as HIV, a strong response from a type of T cell known as "killer" T cell is required. The best way to provoke these cells into action is to use a killed or disabled virus, but that cannot be done with HIV because it's difficult to render the virus harmless.

To get around the danger of using live viruses, scientists are working on synthetic vaccines for HIV and other viral infections such as hepatitis B. However, these vaccines, while safer, do not elicit a very strong T cell response. Recently, scientists have tried encasing the vaccines in fatty droplets called liposomes, which could help promote T cell responses by packaging the protein in a virus-like particle. However, these liposomes have poor stability in blood and body fluids.

Irvine, who is a member of MIT's David H. Koch Institute for Integrative Cancer Research, decided to build on the liposome approach by packaging many of the droplets together in concentric spheres. Once the liposomes are fused together, adjacent liposome walls are chemically "stapled" to each other, making the structure more stable and less likely to break down too quickly following injection. However, once the nanoparticles are absorbed by a cell, they degrade quickly, releasing the vaccine and provoking a T cell response.

In tests with mice, Irvine and his colleagues used the nanoparticles to deliver a protein called ovalbumin, an egg-white protein commonly used in immunology studies because biochemical tools are available to track the immune response to this molecule. They found that three immunizations of low doses of the vaccine produced a strong T cell response after immunization, up to 30 percent of all killer T cells in the mice were specific to the vaccine protein.

That is one of the strongest T cell responses generated by a protein vaccine, and comparable to strong viral vaccines, but without the safety concerns of live viruses, says Irvine. Importantly, the particles also elicit a strong antibody response.

In addition to the malaria studies with scientists at Walter Reed, Irvine is also working on developing the nanoparticles to deliver cancer vaccines and HIV vaccines. Translation of this approach to HIV is being done in collaboration with colleagues at the Ragon Institute of MIT, Harvard and Massachusetts General Hospital. The institute, which funded this study along with the Gates Foundation, Department of Defense and National Institutes of Health, was established in 2009 with the goal of developing an HIV vaccine.

####

For more information, please click here

Contacts:
Caroline McCall
MIT News Office

T: 617-253-1682

Patti Richards
MIT News Office

T: 617-253-8923

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Scientists guide gold nanoparticles to form 'diamond' superlattices: DNA scaffolds cage and coax nanoparticles into position to form crystalline arrangements that mimic the atomic structure of diamond February 4th, 2016

Possible Futures

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Scientists guide gold nanoparticles to form 'diamond' superlattices: DNA scaffolds cage and coax nanoparticles into position to form crystalline arrangements that mimic the atomic structure of diamond February 4th, 2016

Academic/Education

COD Grad Begins Postdoctoral Fellow at Harvard University: Marsela Jorgolli's Passion for Physics Has Led to a Decade of Academic Research That Continues at Harvard University as a Postdoctoral Fellow February 2nd, 2016

Heriot-Watt's Institute of Photonics & Quantum Sciences uses the Deben Microtest 2 kN tensile stage to characterise ceramics and engineering plastics January 21st, 2016

Multiple uses for the JPK NanoWizard AFM system in the Smart Interfaces in Environmental Nanotechnology Group at the University of Illinois at Urbana-Champaign January 20th, 2016

BioSolar Extends Research Agreement With UCSB for Next Phase of Its Super Battery Technology: Development Effort to Continue Under the Supervision of Nobel Laureate, Dr. Alan Heeger January 13th, 2016

Nanomedicine

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Announcements

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Nanobiotechnology

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Novel nanoparticle made of common mineral may help keep tumor growth at bay February 4th, 2016

Nanoparticles Make Fertility Possible during Consumption of Anticancer Drugs February 4th, 2016

Research partnerships

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Polar vortices observed in ferroelectric: New state of matter holds promise for ultracompact data storage and processing February 4th, 2016

Spin dynamics in an atomically thin semi-conductor February 1st, 2016

Graphene shown to safely interact with neurons in the brain January 31st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic