Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Air Force-Funded Researcher Investigates New Material Grown From Sugar

Abstract:
Ordinary table sugar could be a key ingredient to developing much lighter, faster, cheaper, denser and more robust computer electronics for use on U.S. military aircraft.

Air Force-Funded Researcher Investigates New Material Grown From Sugar

Dayton, OH | Posted on February 21st, 2011

Though admittedly far in the future, recent results from a program led by chemist and Rice University professor, Dr. James Tour demonstrate yet another example of the cutting-edge basic research funded by the Air Force Research Laboratory's Office of Scientific Research.

Tour and his colleagues at Rice have developed a relatively easy and controllable method for making pristine sheets of graphene --- the one-atom-thick form of carbon --- from regular table sugar and other solid carbon sources.

"Dr. Tour is exploring a chemical approach to producing high quality carbon based nanostructures such as nanotubes and graphenes with well defined properties," said AFOSR program manager, Dr. Charles Lee.

In their method, a small amount of sugar is placed on a tiny sheet of copper foil. The sugar is then subjected to flowing hydrogen and argon gas under heat and low pressure. After 10 minutes, the sugar is reduced to a pure carbon film, or a single layer of graphene. Adjusting the gas flow allowed the researchers to control the thickness of the film.

The use of solid carbon sources like sugar has allowed Tour to stay away from the more cumbersome chemical vapor deposition method and the high temperatures associated with it. His one-step, low-temperature process makes graphene considerably easier to manufacture.

"In a traditional CVD point of view, it was straightforward to optimize the pristine graphene's quality through adjusting the growth conditions and the metal catalysts with continuous gas sources (CH4 or C2H2)," explained Tour. "With this technique using different kinds of solid carbon sources, more benefits such as graphene doping and thickness control could be realized."

According to Tour, doped graphene opens more possibilities for both Air Force and commercial electronics applications. Pristine graphene has no bandgap, but doped graphene allows for manipulation of electronic and optical properties, important factors for making switching and logic devices.

"These materials can be used in advanced electronics, photonics as well as structural applications for the Air Force," explained Lee.

While the Air Force is focusing primarily on potential electronics applications, many other commercial and medical uses could be possible, including transparent touch screen devices, special biocompatible films for surgery of traumatic brain injuries, faster transistors in personal computers or thin materials for solar energy harvesting.

####

About Air Force Office of Scientific Research
The Air Force Office of Scientific Research in Arlington, Virginia, continues to expand the horizon of scientific knowledge through its leadership and management of the Air Force's basic research program. As a vital component of the Air Force Research Laboratory, AFOSR's mission is to discover, shape and champion basic science that profoundly impacts the future Air Force.

For more information, please click here

Copyright © Air Force Office of Scientific Research

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Imec Reports Four Percent Growth for 2013 Fiscal Year End —Continues to Accelerate Innovation Through Global Collaborations and Technological Breakthroughs in Nanoelectronics— April 24th, 2014

Multicapacity Microreactor for Catalyst Characterisation April 24th, 2014

Making graphene work for real-world devices: Fundamental research in phonon scattering helps researchers design graphene materials for applications April 24th, 2014

Return on investment for kit and promotion materials April 24th, 2014

Thin films

Atomic switcheroo explains origins of thin-film solar cell mystery April 23rd, 2014

Like a hall of mirrors, nanostructures trap photons inside ultrathin solar cells April 22nd, 2014

Nanomaterial Outsmarts Ions April 22nd, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Display technology/LEDs/SS Lighting/OLEDs

Progress made in developing nanoscale electronics: New research directs charges through single molecules April 21st, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

PAM-XIAMEN Offers UV LED wafer April 15th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Imec Reports Four Percent Growth for 2013 Fiscal Year End —Continues to Accelerate Innovation Through Global Collaborations and Technological Breakthroughs in Nanoelectronics— April 24th, 2014

Making graphene work for real-world devices: Fundamental research in phonon scattering helps researchers design graphene materials for applications April 24th, 2014

Atomic switcheroo explains origins of thin-film solar cell mystery April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Possible Futures

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

The "Tipping Point" February 12th, 2014

Nanotubes/Buckyballs

Return on investment for kit and promotion materials April 24th, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Amino-functionalized carbon nanotubes act as a carrier for nerve growth factor April 21st, 2014

Effects of Carbon Nanotubes Studied on Pregnant Mothers April 12th, 2014

Nanoelectronics

Imec Reports Four Percent Growth for 2013 Fiscal Year End —Continues to Accelerate Innovation Through Global Collaborations and Technological Breakthroughs in Nanoelectronics— April 24th, 2014

Progress made in developing nanoscale electronics: New research directs charges through single molecules April 21st, 2014

Better solar cells, better LED light and vast optical possibilities April 12th, 2014

Catching the (Invisible) Wave: UC Santa Barbara researchers create a unique semiconductor that manipulates light in the invisible infrared/terahertz range, paving the way for new and enhanced applications April 11th, 2014

Announcements

Imec Reports Four Percent Growth for 2013 Fiscal Year End —Continues to Accelerate Innovation Through Global Collaborations and Technological Breakthroughs in Nanoelectronics— April 24th, 2014

Multicapacity Microreactor for Catalyst Characterisation April 24th, 2014

Making graphene work for real-world devices: Fundamental research in phonon scattering helps researchers design graphene materials for applications April 24th, 2014

Return on investment for kit and promotion materials April 24th, 2014

Photonics/Optics/Lasers

Making graphene work for real-world devices: Fundamental research in phonon scattering helps researchers design graphene materials for applications April 24th, 2014

Return on investment for kit and promotion materials April 24th, 2014

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Solar/Photovoltaic

Making graphene work for real-world devices: Fundamental research in phonon scattering helps researchers design graphene materials for applications April 24th, 2014

Atomic switcheroo explains origins of thin-film solar cell mystery April 23rd, 2014

Like a hall of mirrors, nanostructures trap photons inside ultrathin solar cells April 22nd, 2014

Global leader in solar cell manufacturing eyes New York for major expansion outside of Japan: CNSE and Solar Frontier Explore $700 Million Investment, Job Creation in New York State April 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE