Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > International Team of Scientists Says It's High 'Noon' for Microwave Photons

Image of chip containing the superconducting integrated circuit used to generate NOON microwave states. Credit: Erik Lucero, UCSB
Image of chip containing the superconducting integrated circuit used to generate NOON microwave states. Credit: Erik Lucero, UCSB

Abstract:
An important milestone toward the realization of a large-scale quantum computer, and further demonstration of a new level of the quantum control of light, were accomplished by a team of scientists at UC Santa Barbara and in China and Japan.

International Team of Scientists Says It's High 'Noon' for Microwave Photons

Santa Barbara, CA | Posted on February 16th, 2011

The study, published in the Feb. 7 issue of the journal Physical Review Letters, involved scientists from Zhejiang University, China, and NEC Corporation, Japan. The experimental effort was pursued in the research groups of UCSB physics professors Andrew Cleland and John Martinis.

The team described how they used a superconducting quantum integrated circuit to generate unique quantum states of light known as "NOON" states. These states, generated from microwave frequency photons, the quantum unit of light, were created and stored in two physically-separated microwave storage cavities, explained first author Haohua Wang, postdoctoral fellow in physics at UCSB. The quantum NOON states were created using one, two, or three photons, with all the photons in one cavity, leaving the other cavity empty. This was simultaneous with the first cavity being empty, with all the photons stored in the second cavity.

"This seemingly impossible situation, allowed by quantum mechanics, led to interesting results when we looked inside the cavities," said second author Matteo Mariantoni, postdoctoral fellow in physics at UCSB. "There was a 50 percent chance of seeing all the photons in one cavity, and a 50 percent chance of not finding any -- in which case all the photons could always be found in the other cavity."

However, if one of the cavities was gently probed before looking inside, thus changing the quantum state, the effect of the probing could be seen, even if that cavity was subsequently found to be empty, he added.

"It's kind of like the states are ghostly twins or triplets," said Wang. "They are always together, but somehow you never know where they are. They also have a mysterious way of communicating, so they always seem to know what is going to happen." Indeed, these types of states display what Einstein famously termed, "spooky action at a distance," where prodding or measuring a quantum state in one location affects its behavior elsewhere.

The quantum integrated circuit, which includes superconducting quantum bits in addition to the microwave storage cavities, forms part of what eventually may become a quantum computational architecture.

####

For more information, please click here

Contacts:
Gail Gallessich
805-893-7220

George Foulsham
805-893-3071

Copyright © UC Santa Barbara

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Academic/Education

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

New JEOL E-Beam Lithography System to Enhance Quantum NanoFab Capabilities May 6th, 2015

FEI Partners With the George Washington University to Equip New Science & Engineering Hall: Suite of new high-performance microscopes will be used for cutting-edge experiments at GW’s new research facility April 29th, 2015

Renishaw Raman systems used to study 2D materials at Boston University, Massachusetts, USA. April 28th, 2015

Quantum Computing

Researchers discover 'swing-dancing' pairs of electrons: Findings set the stage for room-temperature superconductivity and the transformation of high-speed rail, quantum computers May 14th, 2015

Researchers build new fermion microscope: Instrument freezes and images 1,000 individual fermionic atoms at once May 13th, 2015

Quantum 'gruyères' for spintronics of the future: Topological insulators become a little less 'elusive' May 12th, 2015

Magic wavelengths: Tuning up Rydberg atoms for quantum information applications May 12th, 2015

Announcements

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Research partnerships

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

Efficiency record for black silicon solar cells jumps to 22.1 percent: Aalto University's researchers improved their previous record by over 3 absolute percents in cooperation with Universitat Politècnica de Catalunya May 18th, 2015

Organic nanoparticles, more lethal to tumors: Carbon-based nanoparticles could be used to sensitize cancerous tumors to proton radiotherapy and induce more focused destruction of cancer cells, a new study shows May 18th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project