Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > FEI Announces New Solution for Natural Gas Extraction

Image of a Marcellus shale sample with nanoscale pores visible within organic matter, taken using a Helios system from FEI
Image of a Marcellus shale sample with nanoscale pores visible within organic matter, taken using a Helios system from FEI

Abstract:
3D, nanometer-scale characterization of pore networks provides information critical to optimizing extraction procedures and maximizing production

FEI Announces New Solution for Natural Gas Extraction

Hillsboro, OR | Posted on February 15th, 2011

FEI (NASDAQ: FEIC), a leading instrumentation company that provides imaging and analysis systems for research and industry, today announced a novel solution for analyzing the production characteristics and potential of unconventional gas reservoirs. The Helios NanoLab™ DualBeam™ system images kerogen, porosity and microstructures in three dimensions (3D) with nanometer-scale resolution. The data are essential to determining the production potential of the reservoir, optimizing extraction procedures and designing simulators of the nanoscale pore structure.

"Huge reserves of natural gas are known to exist in unconventional gas reservoirs, but it is difficult to produce this gas because it is trapped in poorly connected networks of pores with dimensions as small as a few nanometers," said Dr. Paul Scagnetti, vice president and general manager, Natural Resources Division, FEI. "The ability to understand the structure of these networks allows geologists to make more accurate predictions of producible gas and optimize its extraction."

The University of Oklahoma, in collaboration with Devon Energy, is an early adopter of this novel solution. The Helios system captures images and develops a 3D microstructural model of the pore structure, including the subvolumes of kerogen and its connectivity. The data produced by the Helios are central to a series of recent publications (1Sondergeld et al. 2010; 2Sondergeld and Rai 2010; and 3Curtis et al. 2010) that cast these unconventional reservoirs in a new, more complex light.

"This imaging and analysis capability is the gateway to understanding, and more efficiently extracting, gas from these enormous global hydrocarbon assets," stated Dr. Carl Sondergeld, Professor and Curtis W. Mewbourne Chair, Mewbourne School of Petroleum and Geological Engineering, Oklahoma University.

Sondergeld adds, "Early observations demonstrate that organic matter is distributed differently in different shales, and that this organic material is more porous than previously imagined. The pores are so small that they require new physical controls on the behaviors of gases. The existence of this previously unimaged pore space helps to explain why there is so much producible gas in shales. The images also explain why production declines so rapidly in some of the unconventional shale reservoirs. As a result, this new information is forcing many to reconsider previously held beliefs about unconventional shale reservoirs."

For more information, please visit www.fei-natural-resources.com.

1 Sondergeld, C. H., Ambrose, R. J., Rai, S. S. and Moncrieff, J. "Microstructural Studies of Gas Shales," SPE131771. Unconventional Gas Conference, Pittsburgh, Pennsylvania, February 23-25, 2010.

2 Sondergeld, C. H. and C. S. Rai. "Nanoscale Imaging Visualizes Shale Gas Plays," Exploration and Production, pp. 51-52. Hart Energy Publishing LP, September 1, 2010.

3 Curtis, M., R. J. Ambrose, C. H. Sondergeld and C. S. Rai. "Structural Characterization of GASD Shales on the Micro- and Nanoscales," SPE137693. Canadian Unconventional Resources and International Petroleum Conference, Calgary, Alberta, Canada, October 19-21, 2010.

FEI Safe Harbor Statement

This news release contains forward-looking statements that include statements regarding the performance capabilities and benefits of the Helios NanoLab DualBeam. Factors that could affect these forward-looking statements include but are not limited to failure of the product or technology to perform as expected and achieve anticipated results, unexpected technology problems and our ability to manufacture, ship and deliver the tools or software as expected. Please also refer to our Form 10-K, Forms 10-Q, Forms 8-K and other filings with the U.S. Securities and Exchange Commission for additional information on these factors and other factors that could cause actual results to differ materially from the forward-looking statements. FEI assumes no duty to update forward-looking statements.

####

About FEI
FEI (Nasdaq: FEIC) is a leading diversified scientific instruments company. It is a premier provider of electron- and ion-beam microscopes and tools for nanoscale applications across many industries: industrial and academic materials research, life sciences, semiconductors, data storage, natural resources and more. With more than 60 years of technological innovation and leadership, FEI has set the performance standard in transmission electron microscopes (TEM), scanning electron microscopes (SEM) and DualBeams™, which combine a SEM with a focused ion beam (FIB). FEI’s imaging systems provide 3D characterization, analysis and modification/prototyping with resolutions down to the sub-Ångström (one-tenth of a nanometer) level. FEI’s NanoPorts in North America, Europe and Asia provide centers of technical excellence where its world-class community of customers and specialists collaborate. Headquartered in Hillsboro, Ore., USA, FEI has approximately 1800 employees and sales and service operations in more than 50 countries around the world. More information can be found at: www.fei-natural-resources.com.

For more information, please click here

Contacts:
Sandy Fewkes, Principal (media contact)
MindWrite Communications, Inc.
ph/fx 408.224.4024

www.mind-write.com

FEI Company
Fletcher Chamberlin
(investors and analysts)
Investor Relations
+1 503 726 7710

Copyright © FEI

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

SEMATECH to Showcase Innovation and Advances in Manufacturing at SEMICON Japan 2014: SEMATECH experts will share the latest techniques, emerging trends and best practices in advanced manufacturing strategies and methodologies November 26th, 2014

Australian startup creates world’s first 100% cotton hydrophobic T-Shirts November 26th, 2014

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Announcements

SEMATECH to Showcase Innovation and Advances in Manufacturing at SEMICON Japan 2014: SEMATECH experts will share the latest techniques, emerging trends and best practices in advanced manufacturing strategies and methodologies November 26th, 2014

Australian startup creates world’s first 100% cotton hydrophobic T-Shirts November 26th, 2014

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Tools

Renishaw receives Queen's Award for spectroscopy developments November 25th, 2014

JPK reports on the use of AFM and the CellHesion module to study plant cells at the University of Queensland November 25th, 2014

A*STAR SIMTech wins international award for breaking new ground in actuators: SIMTech invention can be used in an array of industries, and is critical for next generation ultra-precision systems November 24th, 2014

Professional AFM Images with a Three Step Click SmartScan by Park Systems Revolutionizes Atomic Force Microscopy by Automatizing the Imaging Process November 24th, 2014

Energy

Lawrence Livermore researchers develop efficient method to produce nanoporous metals November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Blu-ray disc can be used to improve solar cell performance: Data storage pattern transferred to solar cell increases light absorption November 25th, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE