Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Physicists Isolate Bound States in Graphene Superconductor Junctions

Scanning electron micrograph of a device with an overlaid measurement circuit. Graphene is false coloured orange, large end contacts are Cr/Au and middle tunnel probes are Pb/In. The scale bar is 5 ėm. Credit Nature
Scanning electron micrograph of a device with an overlaid measurement circuit. Graphene is false coloured orange, large end contacts are Cr/Au and middle tunnel probes are Pb/In. The scale bar is 5 ėm. Credit Nature

Abstract:
Illinois researchers have documented the first observations of some unusual physics when two prominent electric materials are connected: superconductors and graphene.

Physicists Isolate Bound States in Graphene Superconductor Junctions

Champaign, IL | Posted on February 15th, 2011

Led by University of Illinois physics professor Nadya Mason, the group published its findings in the journal Nature Physics.

When a current is applied to a normal conductor, such as metal or graphene, it flows through the material as a stream of single electrons. By contrast, electrons travel in pairs in superconductors. Yet when a normal material is sandwiched between superconductors, the normal metal can carry the supercurrent.

Normal metals can adopt superconducting capacity because the paired electrons from the superconductor are translated to special electron-hole pairs in the normal metal, called Andreev bound states (ABS).

"If you have two superconductors with a normal metal between, you can actually transport the superconductivity across the normal material via these bound states, even though the normal material doesn't have the electron pairing that the superconductors do," Mason said.

ABS are extremely difficult to measure or to observe directly. Researchers can measure conduction and overall magnitude of a current, but have not been able to study individual ABS to understand the fundamental physics contributing to these unique states.

Mason's group developed a method of isolating individual ABS by connecting superconducting probes to tiny, nanoscale flakes of graphene called quantum dots. This confined the ABS to discrete energy levels within the quantum dot, allowing the researchers to measure the superconducting ABS individually and even to manipulate them.

"Before this, it wasn't really possible to understand the fundamentals of what is transporting the current," Mason said. "Watching an individual bound state allows you to change one parameter and see how one mode changes. You can really get at a systematic understanding. It also allows you to manipulate ABS to use them for different things that just couldn't be done before."

Superconductor junctions have been proposed for use as superconducting transistors or bits for quantum computers, called qubits. Greater understanding of ABS may enable other applications as well. In addition, it may be possible to use the superconducting graphene quantum dots themselves as solid-state qubits.

"This is a unique case where we found something that we couldn't have discovered without using all of these different elements - without the graphene, or the superconductor, or the quantum dot, it wouldn't have worked. All of these are really necessary to see this unusual state," Mason said.

The U.S. Department of Energy supported this work, conducted at the Frederick Seitz Materials Research Laboratory at Illinois.

The paper, "Transport Through Andreev Bound States in a Graphene Quantum Dot," is online at www.nature.com/nphys/journal/vaop/ncurrent/full/nphys1911.html.

####

For more information, please click here

Contacts:
Liz Ahlberg
Physical Sciences Editor
217-244-1073

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Vortex laser offers hope for Moore's Law: The optics advancement may solve an approaching data bottleneck by helping to boost computing power and information transfer rates tenfold July 30th, 2016

New method for making green LEDs enhances their efficiency and brightness July 30th, 2016

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

A new type of quantum bits July 29th, 2016

Physics

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

A new type of quantum bits July 29th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Vortex laser offers hope for Moore's Law: The optics advancement may solve an approaching data bottleneck by helping to boost computing power and information transfer rates tenfold July 30th, 2016

A new type of quantum bits July 29th, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

Penn team uses nanoparticles to break up plaque and prevent cavities July 28th, 2016

Possible Futures

Vortex laser offers hope for Moore's Law: The optics advancement may solve an approaching data bottleneck by helping to boost computing power and information transfer rates tenfold July 30th, 2016

New method for making green LEDs enhances their efficiency and brightness July 30th, 2016

Scientists change properties of zeolites to improve hemodialysis July 29th, 2016

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

Academic/Education

Thomas Swan and NGI announce unique partnership July 28th, 2016

The NanoWizardŽ AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

News from Quorum: The College of New Jersey use the Quorum Cryo-SEM preparation system in a project to study ice crystals in high altitude clouds July 19th, 2016

Leti and Korea Institute of Science and Technology to Explore Collaboration on Advanced Technologies for Digital Era July 14th, 2016

Nanotubes/Buckyballs/Fullerenes

Easier, faster, cheaper: A full-filling approach to making nanotubes of consistent quality: Approach opens a straightforward route for engineering the properties of single-wall carbon nanotubes July 19th, 2016

Sensing trouble: A new way to detect hidden damage in bridges, roads: University of Delaware engineers devise new method for monitoring structural health July 8th, 2016

Wireless, wearable toxic-gas detector: Inexpensive sensors could be worn by soldiers to detect hazardous chemical agents July 4th, 2016

Nanotubes' 'stuffing' as is: A scientist from the Lomonosov Moscow State University studied the types of carbon nanotubes' 'stuffing' June 2nd, 2016

Quantum Computing

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

A new type of quantum bits July 29th, 2016

Russian physicists discover a new approach for building quantum computers: Physicists find a way of 'bundling together' multiple elements of a quantum computer July 24th, 2016

New Yale-developed device lengthens the life of quantum information July 22nd, 2016

Discoveries

Vortex laser offers hope for Moore's Law: The optics advancement may solve an approaching data bottleneck by helping to boost computing power and information transfer rates tenfold July 30th, 2016

New method for making green LEDs enhances their efficiency and brightness July 30th, 2016

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

A new type of quantum bits July 29th, 2016

Announcements

Vortex laser offers hope for Moore's Law: The optics advancement may solve an approaching data bottleneck by helping to boost computing power and information transfer rates tenfold July 30th, 2016

New method for making green LEDs enhances their efficiency and brightness July 30th, 2016

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

A new type of quantum bits July 29th, 2016

Quantum Dots/Rods

A new type of quantum bits July 29th, 2016

Researchers develop faster, precise silica coating process for quantum dot nanorods July 12th, 2016

Building a better bowtie: Bowtie-shaped nanostructures may advance the development of quantum devices WEIZMANN July 5th, 2016

A new form of hybrid photodetectors with quantum dots and graphene June 19th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic