Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Physicists Isolate Bound States in Graphene Superconductor Junctions

Scanning electron micrograph of a device with an overlaid measurement circuit. Graphene is false coloured orange, large end contacts are Cr/Au and middle tunnel probes are Pb/In. The scale bar is 5 ìm. Credit Nature
Scanning electron micrograph of a device with an overlaid measurement circuit. Graphene is false coloured orange, large end contacts are Cr/Au and middle tunnel probes are Pb/In. The scale bar is 5 ìm. Credit Nature

Abstract:
Illinois researchers have documented the first observations of some unusual physics when two prominent electric materials are connected: superconductors and graphene.

Physicists Isolate Bound States in Graphene Superconductor Junctions

Champaign, IL | Posted on February 15th, 2011

Led by University of Illinois physics professor Nadya Mason, the group published its findings in the journal Nature Physics.

When a current is applied to a normal conductor, such as metal or graphene, it flows through the material as a stream of single electrons. By contrast, electrons travel in pairs in superconductors. Yet when a normal material is sandwiched between superconductors, the normal metal can carry the supercurrent.

Normal metals can adopt superconducting capacity because the paired electrons from the superconductor are translated to special electron-hole pairs in the normal metal, called Andreev bound states (ABS).

"If you have two superconductors with a normal metal between, you can actually transport the superconductivity across the normal material via these bound states, even though the normal material doesn't have the electron pairing that the superconductors do," Mason said.

ABS are extremely difficult to measure or to observe directly. Researchers can measure conduction and overall magnitude of a current, but have not been able to study individual ABS to understand the fundamental physics contributing to these unique states.

Mason's group developed a method of isolating individual ABS by connecting superconducting probes to tiny, nanoscale flakes of graphene called quantum dots. This confined the ABS to discrete energy levels within the quantum dot, allowing the researchers to measure the superconducting ABS individually and even to manipulate them.

"Before this, it wasn't really possible to understand the fundamentals of what is transporting the current," Mason said. "Watching an individual bound state allows you to change one parameter and see how one mode changes. You can really get at a systematic understanding. It also allows you to manipulate ABS to use them for different things that just couldn't be done before."

Superconductor junctions have been proposed for use as superconducting transistors or bits for quantum computers, called qubits. Greater understanding of ABS may enable other applications as well. In addition, it may be possible to use the superconducting graphene quantum dots themselves as solid-state qubits.

"This is a unique case where we found something that we couldn't have discovered without using all of these different elements - without the graphene, or the superconductor, or the quantum dot, it wouldn't have worked. All of these are really necessary to see this unusual state," Mason said.

The U.S. Department of Energy supported this work, conducted at the Frederick Seitz Materials Research Laboratory at Illinois.

The paper, "Transport Through Andreev Bound States in a Graphene Quantum Dot," is online at www.nature.com/nphys/journal/vaop/ncurrent/full/nphys1911.html.

####

For more information, please click here

Contacts:
Liz Ahlberg
Physical Sciences Editor
217-244-1073

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Unraveling the light of fireflies December 17th, 2014

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

Physics

Fraud-proof credit card possible because of quantum physics December 16th, 2014

Nanoscale resistors for quantum devices: The electrical characteristics of new thin-film chromium oxide resistors that can be tuned by controlling the oxygen content detailed in the 'Journal of Applied Physics' December 9th, 2014

Unusual Electronic State Found in New Class of Unconventional Superconductors: Finding gives scientists a new group of materials to explore to unlock secrets of some materials' ability to carry current with no energy loss December 8th, 2014

Light propagation in solar cells made visible December 5th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

Possible Futures

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Open Materials Development Will Be Key for HP's Success in 3D Printing: HP can make a big splash in 3D printing, but it needs to shore up technology claims and avoid the temptation of the razor/razor blade business model in order to flourish November 11th, 2014

Academic/Education

Nanomedicine expert joins Rice faculty: Gang Bao combines genetic, nano and imaging techniques to fight disease December 17th, 2014

FEI and Oregon Health & Science University Install a Complete Correlative Microscopy Workflow in Newly Built Collaborative Science Facility December 16th, 2014

Student Nanotechnology Laboratories Network Set Up in Iran December 15th, 2014

SUNY NanoCollege Celebrates Winter Commencement: Graduates To Pursue High-Tech Career And Educational Opportunities In New York State December 5th, 2014

Nanotubes/Buckyballs

A sponge-like molecular cage for purification of fullerenes December 15th, 2014

'Trojan horse' proteins used to target hard-to-reach cancers: Scientists at Brunel University London have found a way of targeting hard-to-reach cancers and degenerative diseases using nanoparticles, but without causing the damaging side effects the treatment normally brings December 11th, 2014

Detecting gases wirelessly and cheaply: New sensor can transmit information on hazardous chemicals or food spoilage to a smartphone December 8th, 2014

Green meets nano: Scientists at TU Darmstadt create multifunctional nanotubes using nontoxic materials December 3rd, 2014

Quantum Computing

Nanoscale resistors for quantum devices: The electrical characteristics of new thin-film chromium oxide resistors that can be tuned by controlling the oxygen content detailed in the 'Journal of Applied Physics' December 9th, 2014

Electron pairs on demand: Controlled emission and spatial splitting of electron pairs demonstrated December 4th, 2014

Graphene layer reads optical information from nanodiamonds electronically: Possible read head for quantum computers December 1st, 2014

University of Minnesota engineers make sound loud enough to bend light on a computer chip: Device could improve wireless communications systems November 28th, 2014

Discoveries

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Unraveling the light of fireflies December 17th, 2014

Fraud-proof credit card possible because of quantum physics December 16th, 2014

Announcements

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Unraveling the light of fireflies December 17th, 2014

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

Quantum Dots/Rods

Scientists trace nanoparticles from plants to caterpillars: Rice University study examines how nanoparticles behave in food chain December 16th, 2014

TCL Launches World’s Most Advanced TV in the World’s Largest Market: New Quantum Dot TVs with Color IQ™ Optics Deliver OLED-Quality Color at a Fraction of the Price December 15th, 2014

Electron pairs on demand: Controlled emission and spatial splitting of electron pairs demonstrated December 4th, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE