Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > UCLA advance with new nanomaterials good news for next-generation electronic devices

Abstract:
Team controls conduction, surface states in topological insulator nanoribbons

By Wileen Wong Kromhout

UCLA advance with new nanomaterials good news for next-generation electronic devices

Los Angeles, CA | Posted on February 14th, 2011

In recent years, topological insulators have become one of the hottest topics in physics. These new materials act as both insulators and conductors, with their interior preventing the flow of electrical currents while their edges or surfaces allow the movement of a charge.

Perhaps most importantly, the surfaces of topological insulators enable the transport of spin-polarized electrons while preventing the "scattering" typically associated with power consumption, in which electrons deviate from their trajectory, resulting in dissipation.

Because of such characteristics, these materials hold great potential for use in future transistors, memory devices and magnetic sensors that are highly energy efficient and require less power.

In a study published today in Nature Nanotechnology, researchers from UCLA's Henry Samueli School of Engineering and Applied Science and from the materials division of Australia's University of Queensland show the promise of surface-conduction channels in topological insulator nanoribbons made of bismuth telluride and demonstrate that surface states in these nanoribbons are "tunable" ó able to be turned on and off depending on the position of the Fermi level.

"Our finding enables a variety of opportunities in building potential new-generation, low-dissipation nanoelectronic and spintronic devices, from magnetic sensing to storage," said Kang L. Wang, the Raytheon Professor of Electrical Engineering at UCLA Engineering, whose team carried out the research.

Bismuth telluride is well known as a thermoelectric material and has also been predicted to be a three-dimensional topological insulator with robust and unique surface states. Recent experiments with bismuth telluride bulk materials have also suggested two-dimensional conduction channels originating from the surface states. But it has been a great challenge to modify surface conduction, because of dominant bulk contribution due to impurities and thermal excitations in such small-band-gap semiconductors.

The development of topological insulator nanoribbons has helped. With their large surface-to-volume ratios, these nanoribbons significantly enhance surface conditions and enable surface manipulation by external means.

Wang and his team used thin bismuth telluride nanoribbons as conducting channels in field-effect transistor structures. These rely on an electric field to control the Fermi level and hence the conductivity of a channel. The researchers were able to demonstrate for the first time the possibility of controlling surface states in topological insulator nanostructures.

"We have demonstrated a clear surface conduction by partially removing the bulk conduction using an external electric field," said Faxian Xiu, a UCLA staff research associate and lead author of the study. "By properly tuning the gate voltage, very high surface conduction was achieved, up to 51 percent, which represents the highest values in topological insulators."

"This research is very exciting because of the possibility to build nanodevices with a novel operating principle," said Wang, who is also associate director of the California NanoSystems Institute (CNSI) at UCLA. "Very similar to the development of graphene, the topological insulators could be made into high-speed transistors and ultra-high-sensitivity sensors."

The new findings shed light on the controllability of the surface spin states in topological insulator nanoribbons and demonstrate significant progress toward high surface electric conditions for practical device applications. The next step for Wang's team is to produce high-speed devices based on their discovery.

"The ideal scenario is to achieve 100 percent surface conduction with a complete insulating state in the bulk," Xiu said. "Based on the current work, we are targeting high-performance transistors with power consumption that is much less than the conventional complementary metal-oxide semiconductors (CMOS) technology used typically in today's electronics."

Study collaborators Jin Zou, a professor of materials engineering at the University of Queensland; Yong Wang, a Queensland International Fellow; and Zou's team at the division of materials at the University of Queensland contributed significantly to this work. A portion of the research was also done in Alexandros Shailos' lab at UCLA.

The study was funded by the Focus Center Research ProgramóCenter on Functional Engineered Nano Architectonics (FENA) at UCLA Engineering; the U.S. Defense Advanced Research Projects Agency (DARPA); and the Australian Research Council. The research on topological insulators was pioneered by FENA's Shoucheng Zhang, a professor of physics at Stanford University.

####

About UCLA Henry Samueli School of Engineering and Applied Science
The UCLA Henry Samueli School of Engineering and Applied Science, established in 1945, offers 28 academic and professional degree programs and has an enrollment of almost 5,000 students. The school's distinguished faculty are leading research to address many of the critical challenges of the 21st century, including renewable energy, clean water, health care, wireless sensing and networking, and cyber-security. Ranked among the top 10 engineering schools at public universities nationwide, UCLA Engineering is home to seven multimillion-dollar interdisciplinary research centers in wireless sensor systems, nanoelectronics, nanomedicine, renewable energy, customized computing, and the smart grid, all funded by federal and private agencies.

For more information, please click here

Contacts:
Media Contacts
Wileen Wong Kromhout
(310) 206-0540

Copyright © UCLA Henry Samueli School of Engineering and Applied Science

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Govt.-Legislation/Regulation/Funding/Policy

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Francis Alexander Named Deputy Director of Brookhaven Lab's Computational Science Initiative February 16th, 2017

Good vibrations help reveal molecular details: Rice University scientists combine disciplines to pinpoint small structures in unlabeled molecules February 15th, 2017

Possible Futures

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Academic/Education

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

Spintronics

First experimental proof of a 70 year old physics theory: First observation of magnetic phase transition in 2-D materials, as predicted by the Nobel winner Onsager in 1943 January 6th, 2017

Investigations of the skyrmion Hall effect reveal surprising results: One step further towards the application of skyrmions in spintronic devices December 28th, 2016

Electron highway inside crystal December 12th, 2016

Making spintronic neurons sing in unison November 18th, 2016

Chip Technology

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Research opens door to smaller, cheaper, more agile communications tech February 16th, 2017

Memory Technology

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Research opens door to smaller, cheaper, more agile communications tech February 16th, 2017

Scientists determine precise 3-D location, identity of all 23,000 atoms in a nanoparticle: Berkeley Lab researchers help to map iron-platinum particle in unprecedented detail February 6th, 2017

Investigations of the skyrmion Hall effect reveal surprising results: One step further towards the application of skyrmions in spintronic devices December 28th, 2016

Sensors

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Research opens door to smaller, cheaper, more agile communications tech February 16th, 2017

Metamaterial: Mail armor inspires physicists: KIT researchers reverse hall coefficient -- medieval mail armor inspired development of metamaterial with novel properties February 15th, 2017

Nanoelectronics

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

1,000 times more efficient nano-LED opens door to faster microchips February 5th, 2017

Boron atoms stretch out, gain new powers: Rice University simulations demonstrate 1-D material's stiffness, electrical versatility January 26th, 2017

Announcements

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project