Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanotechnology could pave the way for hydrogen fuels

Abstract:
* EADS and Scottish scientists are working on new storage tanks for hydrogen
* Use of hydrogen in aircraft and car engines would deliver huge benefits to the environment
* If successful, EADS plans to fly an unmanned hydrogen-powered test plane in 2014

Nanotechnology could pave the way for hydrogen fuels

Glasgow | Posted on February 14th, 2011

EADS Innovation Works, the Group's corporate research arm, is working with university researchers to find a new solid state storage system for hydrogen. This technology would make it possible to use hydrogen as a clean alternative to traditional hydrocarbon-based fuels in aeroplane and car engines.

Hydrogen is a clean fuel which produces only water on combustion or when combined with oxygen in a fuel cell to produce electrical power. However, it can be expensive and difficult to store safely. In addition, to store hydrogen as a gas demands high volumes, while to store as a liquid increases weight and the energy requirement (to compress it).

Storage of hydrogen in a solid is, therefore, very attractive but minimising weight and volume of the store is challenging and the rate of transfer from the tank to a fuel cell or engine is often slow. These barriers are currently holding back the use of hydrogen on an industrial scale in fuel cells to provide power for aeroplanes and road vehicles.

Chemists at the University of Glasgow are working with EADS by using nanotechnology to alter the design and material composition of a storage tank with the aim of making it so efficient that it will be feasible to use solid state hydrogen on an industrial scale for aeroplanes and cars.

If the developments to the tank structure are successful, EADS is planning to fly an un-manned hydrogen-powered test plane in 2014 with a longer term view of introducing commercial aeroplanes powered by hydrogen.

"Replacing traditional hydrocarbon-based fuels with pollution-free hydrogen in aeroplane and car engines would deliver huge benefits to the environment because carbon emissions would be dramatically reduced" said Dr.-Ing. Agata Godula-Jopek, Fuel Cells Expert in the EADS Power Generation Team, which is coordinating the programme for the company.

Duncan Gregory, Professor of Inorganic Materials at the School of Chemistry at the University of Glasgow, is leading the research. He is using nanotechnology to alter the structure of the Hydrisafe Tank, which is a new design under development by Hydrogen Horizons, a Scottish-registered start-up company.

The University and EADS IW have secured funding from the Materials Knowledge Transfer Network - part of the UK Technology Strategy Board - and the Engineering and Physical Sciences Research Council (EPSRC). This will allow a student to carry out a four year PhD project, spending time at the University and the company's German offices in Ottobrunn.

The research will involve testing the Hydrisafe tank with alternative hydrogen storage materials. The tank currently uses the established and commercially available lanthanum nickel (LaNi¬5) storage alloy. The research will look into replacing LaNi¬5 with other hydride materials such as magnesium hydride (MgH2), which has been modified at the nanoscale to allow it to receive and release the hydrogen at an even faster rate.

Modifying the construction of the tank will extend its longevity, making it suitable to have a solid state hydrogen storage system that can feed a fuel cell at the required energy densities required on an aeroplane.

Professor Gregory said: "Using new active nanomaterials in combination with novel storage tank design principles presents a hugely exciting opportunity to address the considerable challenges of introducing hydrogen as a fuel for aviation. This collaboration between engineers and chemists and between industry and academia provides the pathway to achieve this"

EADS IW and Prof Gregory's team are seeking funding from the European Union to build a European-wide team of academic and industrial partners to examine the wider issues relating to using hydrogen on an industrial scale to power aeroplane and car engines.

There is a recognition that while there is a strong potential for the adoption of fuel cells into the portable fuel cells market, key barriers to delivering this are the safe, efficient and cost-effective storage of hydrogen. The research project, if approved, would explore how best to deliver a practical solid state hydrogen solution for portable and micro fuel cell systems.

####

About EADS
EADS is a global leader in aerospace, defence and related services. In 2009, the Group - comprising Airbus, Astrium, Eurocopter and Cassidian – generated revenues of € 42.8 billion and employed a workforce of more than 119,000.

For more information, please click here

Contacts:
Gregor von Kursell
Media Relations Technology
Tel.: +49 89.60 73 42 55
Fax: +49 89.60 73 42 43

Copyright © EADS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Possible Futures

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Academic/Education

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

COD Grad Begins Postdoctoral Fellow at Harvard University: Marsela Jorgolli's Passion for Physics Has Led to a Decade of Academic Research That Continues at Harvard University as a Postdoctoral Fellow February 2nd, 2016

Heriot-Watt's Institute of Photonics & Quantum Sciences uses the Deben Microtest 2 kN tensile stage to characterise ceramics and engineering plastics January 21st, 2016

Multiple uses for the JPK NanoWizard AFM system in the Smart Interfaces in Environmental Nanotechnology Group at the University of Illinois at Urbana-Champaign January 20th, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Energy

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Aerospace/Space

NSS Pays Tribute to Late NSS Governor Dr. Marvin Minsky, A Pioneer in Artificial Intelligence February 11th, 2016

Researchers develop completely new kind of polymer: Hybrid polymers could lead to new concepts in self-repairing materials, drug delivery and artificial muscles January 30th, 2016

Scientists build a neural network using plastic memristors: A group of Russian and Italian scientists have created a neural network based on polymeric memristors -- devices that can potentially be used to build fundamentally new computers January 28th, 2016

Graphene composite may keep wings ice-free: Rice University develops conductive material to heat surfaces, simplify ice removal January 25th, 2016

Fuel Cells

An alternative to platinum: Iron-nitrogen compounds as catalysts in graphene January 28th, 2016

Teijin to Participate in Nano Tech 2016 January 21st, 2016

Fuel cell advance: Research team reports success with low-cost nickel-based catalyst January 18th, 2016

Production of Graphene Oxide Nanosheets to Economize Fuel Cells January 1st, 2016

Research partnerships

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Research reveals carbon films can give microchips energy storage capability: International team from Drexel University and Paul Sabatier University reveals versatility of carbon films February 11th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic