Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Fleeting Fluctuations in Superconductivity Disappear Close to Transition Temperature

Ivan Bozovic
Ivan Bozovic

Abstract:
Measurements on super-short timescale indicate loss of coherence among electron pairs and may help explain the mechanism of high-temperature superconductivity

Fleeting Fluctuations in Superconductivity Disappear Close to Transition Temperature

Upton, NY | Posted on February 14th, 2011

As part of an ongoing effort to uncover details of how high-temperature superconductors carry electrical current with no resistance, scientists at Johns Hopkins University and the U.S. Department of Energy's Brookhaven National Laboratory have measured fluctuations in superconductivity across a wide range of temperatures using terahertz spectroscopy. Their technique allows them to see fluctuations lasting mere billionths of a billionth of a second, and reveals that these fleeting fluctuations disappear 10-15 Kelvin (K) above the transition temperature (Tc) at which superconductivity sets in.

"Our findings suggest that in cuprate superconductors, the transition to the non-superconducting state is driven by a loss of coherence among the electron pairs," said Brookhaven physicist Ivan Bozovic, a co-author on a paper describing the results in Nature Physics online, February 13, 2011.

Scientists have been searching for an explanation of high-T c superconductivity in cuprates since these materials were discovered some 25 years ago. Because they can operate at temperatures much warmer than conventional superconductors, which must be cooled to near absolute zero (0 K or -273 degrees Celsius), high- Tc superconductors have the potential for real world applications. If scientists can unravel the current-carrying mechanism, they may even be able to discover or design versions that operate at room temperature for applications such as zero-loss power transmission lines. For this reason, many researchers believe that understanding how this transition to superconductivity occurs in cuprates is one of the most important open questions in physics today.

In conventional superconductors, electron pairs form at the transition temperature and condense into a collective, coherent state to carry current with no resistance. In high- Tc varieties, which can operate at temperatures as high as 165 K, there are some indications that electron pairs might form at temperatures 100-200 K higher, but only condense to become coherent when cooled to the transition temperature.

To explore the phase transition, the Johns Hopkins-BNL team sought evidence for superconducting fluctuations above Tc.

"These fluctuations are something like small islands or droplets of superconductivity, within which the electron pairs are coherent, which pop up here and there and live for a while and then evaporate to pop up again elsewhere," Bozovic said. "Such fluctuations occur in every superconductor," he explained, "but in conventional ones only very, very close to Tc - the transition is in fact very sharp."

Some scientists have speculated that in cuprates, on the contrary, superconducting fluctuations might exist in an extremely broad region, all the way up to the temperature at which the electron pairs form. In the present study, the scientists tackle this question head-on, by measuring the conductivity as a function of temperature and frequency up to the terahertz range.

"With this technique, one can see superconducting fluctuations as short-lived as one billionth of one billionth of a second - the shortest possible - and over the entire phase diagram," Bozovic said.

The scientists studied a superconductor containing variable amounts of lanthanum and strontium layered with copper oxide. The samples were fabricated at Brookhaven, using a unique atomic-layer molecular beam epitaxy system that allows for digital synthesis of atomically smooth and perfect thin films. Terahertz spectroscopy measurements were performed at Johns Hopkins.

The central finding was somewhat surprising: The scientists clearly observed superconducting fluctuations, but these fluctuations faded out relatively quickly, within about 10-15 K above Tc, regardless of the lanthanum/strontium ratio.

This implies that in cuprates at the transition temperature, electron pairs lose their coherence. This is in contrast to what happens in conventional superconductors, where the electron pairs break apart at the transition temperature.

"So, unlike in conventional superconductors, the transition in cuprates is not driven by electron (de)pairing but rather by loss of coherence between pairs - that is, by phase fluctuations," Bozovic said. "The hope is that understanding this process in full detail may bring us one step closer towards cracking the enigma of high-temperature superconductivity."

This research was supported by DOE's Office of Science.

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation of State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

Contacts:
Media Contacts: Contacts: Karen McNulty Walsh

(631)344-8350
or
Peter Genzer

(631) 344-3174

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

The 16th Trends in Nanotechnology International Conference (TNT 2015) unveils 25 Keynote Speakers: Call for abstracts open April 27th, 2015

Graphenea celebrates fifth anniversary April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Physics

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Electron spin brings order to high entropy alloys April 23rd, 2015

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Quantum 'paparazzi' film photons in the act of pairing up April 22nd, 2015

Thin films

Phonons, arise! Small electric voltage alters conductivity in key materials April 22nd, 2015

Better battery imaging paves way for renewable energy future April 20th, 2015

Cobalt film a clean-fuel find: Rice University discovery is efficient, robust at drawing hydrogen and oxygen from water April 15th, 2015

The microscopic topography of ink on paper: Researchers have analyzed the varying thickness of printed toner in unprecedented 3-D detail, yielding insights that could lead to higher quality, less expensive and more environmentally-friendly glossy and non-glossy papers April 14th, 2015

Possible Futures

Printing Silicon on Paper, with Lasers April 21st, 2015

A glass fiber that brings light to a standstill: By coupling photons to atoms, light in a glass fiber can be slowed down to the speed of an express train; for a short while it can even be brought to a complete stop April 9th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Academic/Education

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Iranian Female Professor Awarded UNESCO Medal in Nanoscience April 20th, 2015

JPK reports on the use of the NanoWizard® 3 AFM system at the Hebrew University of Jerusalem April 14th, 2015

UK National Graphene Institute Selects Bruker as Official Partner: World-Leading Graphene Research Facility Purchases Multiple Bruker AFMs April 7th, 2015

Discoveries

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Cacao Seed Extract Used in Production of Catalytic Nanoparticles April 27th, 2015

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

Materials/Metamaterials

The 16th Trends in Nanotechnology International Conference (TNT 2015) unveils 25 Keynote Speakers: Call for abstracts open April 27th, 2015

Graphenea celebrates fifth anniversary April 27th, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Announcements

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

The 16th Trends in Nanotechnology International Conference (TNT 2015) unveils 25 Keynote Speakers: Call for abstracts open April 27th, 2015

Graphenea celebrates fifth anniversary April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Tools

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

ORNL reports method that takes quantum sensing to new level April 23rd, 2015

Quantum 'paparazzi' film photons in the act of pairing up April 22nd, 2015

Richards-Kortum elected to American Academy of Arts and Sciences: April 22nd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project