Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > MITRE-Harvard Team Develops First Programmable Nanoprocessor

Abstract:
The world's first programmable nanoprocessor has been developed and demonstrated by an interdisciplinary collaboration between teams of scientists and engineers working at The MITRE Corporation and Harvard University.

MITRE-Harvard Team Develops First Programmable Nanoprocessor

McLean, VA | Posted on February 11th, 2011

The groundbreaking prototype computer system is described in a paper published today in the journal Nature. The system represents a significant step forward in the complexity of computer circuits that can be built from nanometer-scale (i.e., molecular scale) components. It also represents an advance because the ultra-tiny nanocircuits can be programmed electronically to perform a number of different basic arithmetic and logical functions.

The versatile, ultra-tiny circuits are assembled on a tiny "tile" from sets of precisely engineered and fabricated germanium-silicon wires, surrounded by insulating shells of metal oxides, but still having a total diameter of only 30 nanometers. The novel architecture of the tiles allows a number of them to be connected to assemble even more capable nanoprocessors that could, for example, control a complex electromechanical system.

An additional feature of the advance is that the circuits in the nanoprocessor operate using very little power because their component nanometer-scale wires contain transistor switches that are "nonvolatile." Unlike transistors in conventional microcomputer circuits, once the nanowire transistors are programmed they remember without any additional expenditure of electrical power.

"Because of their very small size and very low power requirements, these new nanoprocessor circuits are building blocks that can control and enable an entirely new class of much smaller, lighter weight electronic sensors and consumer electronics," according to Shamik Das, lead engineer in MITRE's Nanosystems Group and chief architect of the nanoprocessor.

Other members of the development team at MITRE—a pioneer in the nanotechnology field since 1992—included nanotechnology laboratory director James Klemic and James Ellenbogen, chief scientist of the Nanosystems Group. The MITRE team collaborated with a five-person team at Harvard, led by Charles Lieber, a world-leading investigator in the field of nanotechnology, especially for nanowire-based innovations such as the new nanoprocessor.

Ellenbogen, who has worked for nearly two decades toward the development of computers integrated on the nanometer scale, including prior collaborations with Lieber, added that, "This new nanoprocessor represents a major milestone toward realizing the vision of a nanocomputer that was first articulated more than fifty years ago by physicist Richard Feynman."

The technical paper appears in the February 10, 2011, issue of Nature. An abstract is available online at www.nature.com/nature/journal/v470/n7333/full/nature09749.html.

####

About MITRE Corporation
The MITRE Corporation is a not-for-profit organization that provides systems engineering, research and development, and information technology support to the government. It operates federally funded research and development centers for the Department of Defense, the Federal Aviation Administration, the Internal Revenue Service and Department of Veterans Affairs, and the Department of Homeland Security, with principal locations in Bedford, Mass., and McLean, Va.

For more information, please click here

Contacts:
Jennifer J. Shearman
(781) 271-3430

Karina H. Wright
(703) 983-6125

Copyright © MITRE Corporation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The first PE blown films with nanotubes hit the Chinese market April 26th, 2018

Watching nanomaterials form in 4D: Novel technology allows researchers to see dynamic reactions as they happen at the nanoscale April 26th, 2018

The dispute about the origins of terahertz photoresponse in graphene results in a draw April 26th, 2018

Nuclear radiation detecting device could lead to new homeland security tool: New device can detect gamma rays and identify radioactive isotopes April 25th, 2018

Chip Technology

Getting electrons to move in a semiconductor: Gallium oxide shows high electron mobility, making it promising for better and cheaper devices April 24th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

When superconductivity disappears in the core of a quantum tube: By replacing the electrons with ultra-cold atoms, a group of physicists has created a perfectly clean material, unveiling new states of matter at the quantum level April 16th, 2018

Nanoelectronics

Getting electrons to move in a semiconductor: Gallium oxide shows high electron mobility, making it promising for better and cheaper devices April 24th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Non-toxic filamentous virus helps quickly dissipate heat generated by electronic devices April 4th, 2018

Ancient paper art, kirigami, poised to improve smart clothing: New research shows how paper-cutting can make ultra strong, stretchable electronics April 3rd, 2018

Announcements

The first PE blown films with nanotubes hit the Chinese market April 26th, 2018

Arbe Robotics Selects GLOBALFOUNDRIES for its High-Resolution Imaging Radar to Enable Safety for Autonomous Cars: Arbe Robotics’ proprietary chipset leverages GF’s 22FDX® technology to deliver industry’s first real-time 4D imaging radar for level 4 and 5 autonomous driving April 26th, 2018

Watching nanomaterials form in 4D: Novel technology allows researchers to see dynamic reactions as they happen at the nanoscale April 26th, 2018

The dispute about the origins of terahertz photoresponse in graphene results in a draw April 26th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project