Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > MITRE-Harvard Team Develops First Programmable Nanoprocessor

Abstract:
The world's first programmable nanoprocessor has been developed and demonstrated by an interdisciplinary collaboration between teams of scientists and engineers working at The MITRE Corporation and Harvard University.

MITRE-Harvard Team Develops First Programmable Nanoprocessor

McLean, VA | Posted on February 11th, 2011

The groundbreaking prototype computer system is described in a paper published today in the journal Nature. The system represents a significant step forward in the complexity of computer circuits that can be built from nanometer-scale (i.e., molecular scale) components. It also represents an advance because the ultra-tiny nanocircuits can be programmed electronically to perform a number of different basic arithmetic and logical functions.

The versatile, ultra-tiny circuits are assembled on a tiny "tile" from sets of precisely engineered and fabricated germanium-silicon wires, surrounded by insulating shells of metal oxides, but still having a total diameter of only 30 nanometers. The novel architecture of the tiles allows a number of them to be connected to assemble even more capable nanoprocessors that could, for example, control a complex electromechanical system.

An additional feature of the advance is that the circuits in the nanoprocessor operate using very little power because their component nanometer-scale wires contain transistor switches that are "nonvolatile." Unlike transistors in conventional microcomputer circuits, once the nanowire transistors are programmed they remember without any additional expenditure of electrical power.

"Because of their very small size and very low power requirements, these new nanoprocessor circuits are building blocks that can control and enable an entirely new class of much smaller, lighter weight electronic sensors and consumer electronics," according to Shamik Das, lead engineer in MITRE's Nanosystems Group and chief architect of the nanoprocessor.

Other members of the development team at MITRE—a pioneer in the nanotechnology field since 1992—included nanotechnology laboratory director James Klemic and James Ellenbogen, chief scientist of the Nanosystems Group. The MITRE team collaborated with a five-person team at Harvard, led by Charles Lieber, a world-leading investigator in the field of nanotechnology, especially for nanowire-based innovations such as the new nanoprocessor.

Ellenbogen, who has worked for nearly two decades toward the development of computers integrated on the nanometer scale, including prior collaborations with Lieber, added that, "This new nanoprocessor represents a major milestone toward realizing the vision of a nanocomputer that was first articulated more than fifty years ago by physicist Richard Feynman."

The technical paper appears in the February 10, 2011, issue of Nature. An abstract is available online at www.nature.com/nature/journal/v470/n7333/full/nature09749.html.

####

About MITRE Corporation
The MITRE Corporation is a not-for-profit organization that provides systems engineering, research and development, and information technology support to the government. It operates federally funded research and development centers for the Department of Defense, the Federal Aviation Administration, the Internal Revenue Service and Department of Veterans Affairs, and the Department of Homeland Security, with principal locations in Bedford, Mass., and McLean, Va.

For more information, please click here

Contacts:
Jennifer J. Shearman
(781) 271-3430

Karina H. Wright
(703) 983-6125

Copyright © MITRE Corporation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

Chip Technology

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Nanoelectronics

Soft decoupling of organic molecules on metal June 23rd, 2016

Tailored DNA shifts electrons into the 'fast lane': DNA nanowire improved by altering sequences June 22nd, 2016

Scientists engineer tunable DNA for electronics applications June 21st, 2016

Novel energy inside a microcircuit chip: VTT developed an efficient nanomaterial-based integrated energy June 10th, 2016

Announcements

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic