Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > MITRE-Harvard Team Develops First Programmable Nanoprocessor

Abstract:
The world's first programmable nanoprocessor has been developed and demonstrated by an interdisciplinary collaboration between teams of scientists and engineers working at The MITRE Corporation and Harvard University.

MITRE-Harvard Team Develops First Programmable Nanoprocessor

McLean, VA | Posted on February 11th, 2011

The groundbreaking prototype computer system is described in a paper published today in the journal Nature. The system represents a significant step forward in the complexity of computer circuits that can be built from nanometer-scale (i.e., molecular scale) components. It also represents an advance because the ultra-tiny nanocircuits can be programmed electronically to perform a number of different basic arithmetic and logical functions.

The versatile, ultra-tiny circuits are assembled on a tiny "tile" from sets of precisely engineered and fabricated germanium-silicon wires, surrounded by insulating shells of metal oxides, but still having a total diameter of only 30 nanometers. The novel architecture of the tiles allows a number of them to be connected to assemble even more capable nanoprocessors that could, for example, control a complex electromechanical system.

An additional feature of the advance is that the circuits in the nanoprocessor operate using very little power because their component nanometer-scale wires contain transistor switches that are "nonvolatile." Unlike transistors in conventional microcomputer circuits, once the nanowire transistors are programmed they remember without any additional expenditure of electrical power.

"Because of their very small size and very low power requirements, these new nanoprocessor circuits are building blocks that can control and enable an entirely new class of much smaller, lighter weight electronic sensors and consumer electronics," according to Shamik Das, lead engineer in MITRE's Nanosystems Group and chief architect of the nanoprocessor.

Other members of the development team at MITRE—a pioneer in the nanotechnology field since 1992—included nanotechnology laboratory director James Klemic and James Ellenbogen, chief scientist of the Nanosystems Group. The MITRE team collaborated with a five-person team at Harvard, led by Charles Lieber, a world-leading investigator in the field of nanotechnology, especially for nanowire-based innovations such as the new nanoprocessor.

Ellenbogen, who has worked for nearly two decades toward the development of computers integrated on the nanometer scale, including prior collaborations with Lieber, added that, "This new nanoprocessor represents a major milestone toward realizing the vision of a nanocomputer that was first articulated more than fifty years ago by physicist Richard Feynman."

The technical paper appears in the February 10, 2011, issue of Nature. An abstract is available online at www.nature.com/nature/journal/v470/n7333/full/nature09749.html.

####

About MITRE Corporation
The MITRE Corporation is a not-for-profit organization that provides systems engineering, research and development, and information technology support to the government. It operates federally funded research and development centers for the Department of Defense, the Federal Aviation Administration, the Internal Revenue Service and Department of Veterans Affairs, and the Department of Homeland Security, with principal locations in Bedford, Mass., and McLean, Va.

For more information, please click here

Contacts:
Jennifer J. Shearman
(781) 271-3430

Karina H. Wright
(703) 983-6125

Copyright © MITRE Corporation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Self-assembling biomaterial forms nanostructure templates for human tissue formation April 27th, 2015

International research team discovers new mechanism behind malaria progression: Findings provide a new avenue for research in malaria treatment April 27th, 2015

More is less in novel electronic material: Adding electrons actually shrinks the system April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Chip Technology

Two-dimensional semiconductor comes clean April 27th, 2015

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Drexel materials scientists putting a new spin on computing memory April 22nd, 2015

Printing Silicon on Paper, with Lasers April 21st, 2015

Nanoelectronics

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

New class of 3D-printed aerogels improve energy storage April 22nd, 2015

‘Oxford Instruments Young Nanoscientist India Award 2015’ to Prof. Arindam Ghosh April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Announcements

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

The 16th Trends in Nanotechnology International Conference (TNT 2015) unveils 25 Keynote Speakers: Call for abstracts open April 27th, 2015

Graphenea celebrates fifth anniversary April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project