Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Novel device sheds light on the beauty of science

The University logo etched on to a piece of human hair after it was cross sectioned.
The University logo etched on to a piece of human hair after it was cross sectioned.

Abstract:
The wonder of science often comes from the endless possibilities opened up by each successive discovery and the unexpected findings that result. Scientists at the University of Bristol now have a new tool that will yield yet more and unprecedented levels of information - and crucially, without disturbing the natural, physical state of the object under scrutiny.

Novel device sheds light on the beauty of science

UK | Posted on February 10th, 2011

The past few months have seen physicists at Bristol's Interface Analysis Centre vying for time on the dualbeam instrument, which as centre Director Dr Tom Scott says, "unlocks the key to a whole new world".

It has so far produced hundreds of images that are as beautiful as they are revelatory, and those at the IAC are keen to see what more the dualbeam can do, working with colleagues from across the University to delve into all matter, from diamonds to insect ears.

The dualbeam looks at surface structures with a resolution of less than a nanometre - the equivalent of ten millionths of the thickness of a human hair. The resolution of the images produced is just one nanometre, which is beyond miniscule, given that it takes 1,000 nanometres to make one micron, and 1,000 microns constitute a single millimetre.

The dualbeam is so called because it operates using two systems - a focused ion beam (FIB) and a high spec field emission scanning electron microscope (SEM). It operates using gallium ions derived from a liquid metal ion source that are directed at the surface in a tightly controlled beam in which individual atoms are travelling at speeds of up to one million miles an hour. The ion beam can be precisely controlled to remove material from tightly defined areas - essentially performing micro and even nano-surgery on almost any material.

Unlike other techniques used for dissecting materials, the dualbeam can extract information and capture images without causing any detectable damage except over a tiny area. It can also deposit materials such as gold and platinum, known for their conductivity, on to the surface structure, providing insights into the composition and behaviour of materials.

For physicists looking for quantum wells, biologists looking at the structure of membranes in the ears of tree crickets, and engineers keen to understand the nanostructure of exotic alloys, the dualbeam seems to hold the key to success.

"It makes things possible which were previously considered impossible, it's at the heart of what makes science beautiful," says Dr Scott. "It can do things in such a precisely defined way to such a high degree of accuracy that it really is incredible. In fact, it's difficult to comprehend just how small a scale this thing works on."

Some of the project proposals under consideration that would make use of the dualbeam include an examination of the ears of Indian tree crickets, where the dualbeam could be used to slice and view in three dimensions reconstructions of cricket ears. The findings could ultimately inform medical advancements in hearing devices for humans.

Another involves examining the materials used to build nuclear power stations. The rate at which they age, and the outputs produced as they do so, is of serious concern. A closer examination of the microstructure of stainless steels, and the processes by which they accommodate strain when affected by thermal cycling in power stations, would yield significant information about potential failure risks that could subsequently be safeguarded against in the design of the next generation of power stations.

The dualbeam could also be used in quantum cryptography, to devise ways of transmitting messages in a way that is resistant to attempts to tap into the source, using emitters constructed from a single photonic light source so small and so intricately encoded as to be virtually undetectable.

In biochemistry, researchers are looking at making actuators - "gold sandwiches" with a polymer filling which could swim through the bloodstream, collecting information that could be used to inform medical approaches to human disease.

Dissecting and reconstructing structures in three dimensions can take a matter of minutes or hours, depending on the volume of the material under scrutiny. The dualbeam also has an automation capability which allows researchers to program it to carry out operational tasks, freeing them up to continue with something else. Dr Scott compares it to a multi-faceted kitchen aid: "This machine basically does all the slicing and dicing, leaving you to concentrate on making a really fantastic meal."

Dr Scott is keen to seek out other collaborations that will test the boundaries of every discipline and put materials and this new tool through its paces: "The dualbeam instrument is a clear example of the University's commitment to groundbreaking developments in research. If we are going to be the leaders in the UK and internationally in terms of research we need to be pushing the boundaries of what is technically possible, and this new piece of equipment will certainly enable us to do that."

####

For more information, please click here

Copyright © University of Bristol

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Harris & Harris Group to Host Conference Call on Second-Quarter 2014 Financial Results on August 15, 2014 July 23rd, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Deadline Announced for Registration in 7th Int'l Nanotechnology Festival in Iran July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Possible Futures

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

Academic/Education

Haydale Announces Collaboration Agreement with Swansea University’s Welsh Centre for Printing and Coatings (WCPC) July 12th, 2014

STFC takes delivery of the 100th Hitachi Tabletop SEM in the UK July 3rd, 2014

Innovation Management and the Emergence of the Nanobiotechnology Industry July 1st, 2014

Albany NanoCollege Faculty Member Selected as Editor-in-Chief of the Prestigious Journal of Electronic Materials July 1st, 2014

Announcements

Harris & Harris Group to Host Conference Call on Second-Quarter 2014 Financial Results on August 15, 2014 July 23rd, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Deadline Announced for Registration in 7th Int'l Nanotechnology Festival in Iran July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Tools

EPFL Research on the use of AFM based nanoscale IR spectroscopy for the study of single amyloid molecules wins poster competition at Swiss Physics Society meeting July 22nd, 2014

The Hiden EQP Plasma Diagnostic with on-board MCA July 22nd, 2014

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Bruker Awarded Fourth PeakForce Tapping Patent: AFM Mode Uniquely Combines Highest Resolution Imaging and Material Property Mapping July 22nd, 2014

Quantum nanoscience

Physicists Use Computer Models to Reveal Quantum Effects in Biological Oxygen Transport: The team solved a long-standing question by explaining why oxygen – and not deadly carbon monoxide – preferably binds to the proteins that transport it around the body. July 17th, 2014

Bending the rules: A UCSB postdoctoral scholar in physics discovers a counterintuitive phenomenon: the coexistence of superconductivity with dissipation June 29th, 2014

Singapore Researchers Use FEI Titan S/TEM to Link Plasmonics with Molecular Electronics: As described in the March 28 issue of Science, researchers discover quantum plasmonic tunneling – a phenomenon that may eventually lead to new, ultra-fast electrical circuits June 24th, 2014

New quantum mechanism to trigger the emission of tunable light at terahertz frequencies June 18th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE