Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Novel device sheds light on the beauty of science

The University logo etched on to a piece of human hair after it was cross sectioned.
The University logo etched on to a piece of human hair after it was cross sectioned.

Abstract:
The wonder of science often comes from the endless possibilities opened up by each successive discovery and the unexpected findings that result. Scientists at the University of Bristol now have a new tool that will yield yet more and unprecedented levels of information - and crucially, without disturbing the natural, physical state of the object under scrutiny.

Novel device sheds light on the beauty of science

UK | Posted on February 10th, 2011

The past few months have seen physicists at Bristol's Interface Analysis Centre vying for time on the dualbeam instrument, which as centre Director Dr Tom Scott says, "unlocks the key to a whole new world".

It has so far produced hundreds of images that are as beautiful as they are revelatory, and those at the IAC are keen to see what more the dualbeam can do, working with colleagues from across the University to delve into all matter, from diamonds to insect ears.

The dualbeam looks at surface structures with a resolution of less than a nanometre - the equivalent of ten millionths of the thickness of a human hair. The resolution of the images produced is just one nanometre, which is beyond miniscule, given that it takes 1,000 nanometres to make one micron, and 1,000 microns constitute a single millimetre.

The dualbeam is so called because it operates using two systems - a focused ion beam (FIB) and a high spec field emission scanning electron microscope (SEM). It operates using gallium ions derived from a liquid metal ion source that are directed at the surface in a tightly controlled beam in which individual atoms are travelling at speeds of up to one million miles an hour. The ion beam can be precisely controlled to remove material from tightly defined areas - essentially performing micro and even nano-surgery on almost any material.

Unlike other techniques used for dissecting materials, the dualbeam can extract information and capture images without causing any detectable damage except over a tiny area. It can also deposit materials such as gold and platinum, known for their conductivity, on to the surface structure, providing insights into the composition and behaviour of materials.

For physicists looking for quantum wells, biologists looking at the structure of membranes in the ears of tree crickets, and engineers keen to understand the nanostructure of exotic alloys, the dualbeam seems to hold the key to success.

"It makes things possible which were previously considered impossible, it's at the heart of what makes science beautiful," says Dr Scott. "It can do things in such a precisely defined way to such a high degree of accuracy that it really is incredible. In fact, it's difficult to comprehend just how small a scale this thing works on."

Some of the project proposals under consideration that would make use of the dualbeam include an examination of the ears of Indian tree crickets, where the dualbeam could be used to slice and view in three dimensions reconstructions of cricket ears. The findings could ultimately inform medical advancements in hearing devices for humans.

Another involves examining the materials used to build nuclear power stations. The rate at which they age, and the outputs produced as they do so, is of serious concern. A closer examination of the microstructure of stainless steels, and the processes by which they accommodate strain when affected by thermal cycling in power stations, would yield significant information about potential failure risks that could subsequently be safeguarded against in the design of the next generation of power stations.

The dualbeam could also be used in quantum cryptography, to devise ways of transmitting messages in a way that is resistant to attempts to tap into the source, using emitters constructed from a single photonic light source so small and so intricately encoded as to be virtually undetectable.

In biochemistry, researchers are looking at making actuators - "gold sandwiches" with a polymer filling which could swim through the bloodstream, collecting information that could be used to inform medical approaches to human disease.

Dissecting and reconstructing structures in three dimensions can take a matter of minutes or hours, depending on the volume of the material under scrutiny. The dualbeam also has an automation capability which allows researchers to program it to carry out operational tasks, freeing them up to continue with something else. Dr Scott compares it to a multi-faceted kitchen aid: "This machine basically does all the slicing and dicing, leaving you to concentrate on making a really fantastic meal."

Dr Scott is keen to seek out other collaborations that will test the boundaries of every discipline and put materials and this new tool through its paces: "The dualbeam instrument is a clear example of the University's commitment to groundbreaking developments in research. If we are going to be the leaders in the UK and internationally in terms of research we need to be pushing the boundaries of what is technically possible, and this new piece of equipment will certainly enable us to do that."

####

For more information, please click here

Copyright © University of Bristol

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Possible Futures

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Academic/Education

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

The Physics Department of Imperial College, London, uses the Quorum Q150T to deposit metals and ITO to make plasmonic sensors and electric contact pads July 13th, 2017

Announcements

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Tools

Nanometrics Announces Preliminary Results for the Third Quarter of 2017: Quarterly Results Impacted by Delays in Revenue Recognition on Multiple Systems into Japan October 12th, 2017

Seeing the next dimension of computer chips: Researchers image perfectly smooth side-surfaces of 3-D silicon crystals with a scanning tunneling microscope, paving the way for smaller and faster computing devices October 11th, 2017

Quorum announces new customer support and demonstration facilities for users worldwide October 10th, 2017

Graphene forged into three-dimensional shapes September 26th, 2017

Quantum nanoscience

What can be discovered at the junction of physics and chemistry October 6th, 2017

Energy against the current on a quantum scale, without contradicting the laws of physics: A piece of research in which the UPV/EHU-University of the Basque Country has participated confirms that merely observing a flow of energy or particles can change its direction October 6th, 2017

Enhancing the sensing capabilities of diamonds with quantum properties: A simple method can give diamonds the special properties needed for quantum applications such as sensing magnetic fields September 24th, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project