Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Molecules Are Sensitive to Their Surroundings

Diffraction studies provided the insights needed to understand key molecules in hydrogen storage
Diffraction studies provided the insights needed to understand key molecules in hydrogen storage

Abstract:
Structure of hydrogen storage molecule solved, once orientation of nearby ions elucidated

Molecules Are Sensitive to Their Surroundings

Richland, WA | Posted on February 8th, 2011

Results: For nearly a century, nobody knew how the little molecule that's in the middle of many of today's hydrogen storage and release concepts was organized. Thanks to an interdisciplinary team of scientists at Pacific Northwest National Laboratory and Los Alamos National Laboratory, the structure of this molecule, known as DADB, has been determined. And DADB's structure was exactly opposite of what was expected in more ways than one.

"The irony," said Dr. Tom Autrey, the PNNL scientist who led the research, "is that the structure could not be that complex." The challenge was in understanding how one structure, containing a pair of nitrogen and boron atoms surrounded by only 12 hydrogen atoms, stretched and twisted in the solid molecular crystal.

Why it matters: Running cars on fossil fuels presents growing problems, economically, politically, and environmentally. Replacing fossil fuels with hydrogen and fuel cells is an attractive option. Determining the structure of DADB, created at the initial stages when hydrogen is released from the popular hydrogen storage material ammonia borane, allows scientists to accurately model and predict complex, molecular reactions in the solid state. Understanding the subtleties of the structure of DADB also provides insights into developing new materials with the perfect properties to store energy in chemical bonds for efficient fuel cell operations.

Methods: The team began by synthesizing the DADB using a new method they developed that allowed the molecular crystal to slowly form at room temperature. They used solid-state nuclear magnetic resonance (NMR) spectroscopy to study the molecule. The NMR spectrum of the molecular crystal was surprisingly different than the NMR spectrum of the molecular complex in solution. The team felt that the hydrogen atoms in the molecular crystal might be influencing the arrangement of atoms.

"Theoreticians couldn't accurately predict the structure, and experimentalists weren't getting all the information needed with NMR," said Dr. Gregory Schenter, a chemical theorist on the study. "So, we used neutron diffraction to see the missing pieces. It took a while, but we got that Ďah-ha' moment."

With the added diffraction data, they could arrange the atoms in a pattern that explained the results they'd seen. "Mark Bowden solved the 100-year-old puzzle," said Autrey of his PNNL colleague. "He showed how the molecule's structure was affected by the interactions with the neighboring molecules."

This research resulted in two different arrangements of borohydride ions (BH4-) giving the molecule its unique twisted structure.

What's next? This work is part of a series of broader efforts at PNNL to answer the fundamental questions around how to activate hydrogen for use in catalytic reactions as well as energy storage in chemical bonds for use in fuel cell applications. These fundamental studies are needed if the United States is to develop novel methods to store energy from solar and other intermittent clean energy sources.

Acknowledgments: The Department of Energy's Office of Basic Energy Sciences funded this research.

The work was done in DOE's EMSL, a national scientific user facility at PNNL, and the Manuel Lujan Jr. Center operated by Los Alamos National Security LLC.

The work was done by Mark Bowden, David J. Heldebrant, Abhi Karkamkar, Gregory K. Schenter, and Tom Autrey of Pacific Northwest National Laboratory along with Thomas Proffen of Lujan Neutron Scattering Center, Los Alamos National Laboratory.

Reference: Bowden M, DJ Heldebrant, A Karkamkar, T Proffen, GK Schenter, and T Autrey. 2010. "The diammoniate of diborane: Crystal structure and hydrogen release." Chemical Communications 46, 8564-8566.

####

For more information, please click here

Copyright © Pacific Northwest National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Silicon chip with integrated laser: Light from a nanowire: Nanolaser for information technology February 12th, 2016

Nanoparticle reduces targeted cancer drug's toxicity February 11th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Silicon chip with integrated laser: Light from a nanowire: Nanolaser for information technology February 12th, 2016

Electric-car battery materials could harm key soil bacteria February 11th, 2016

Creating a color printer that uses a colorless, non-toxic ink inspired by nature February 11th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Possible Futures

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Silicon chip with integrated laser: Light from a nanowire: Nanolaser for information technology February 12th, 2016

Chemical cages: New technique advances synthetic biology February 10th, 2016

Discoveries

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Silicon chip with integrated laser: Light from a nanowire: Nanolaser for information technology February 12th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Announcements

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Silicon chip with integrated laser: Light from a nanowire: Nanolaser for information technology February 12th, 2016

Nanoparticle reduces targeted cancer drug's toxicity February 11th, 2016

Tools

Scientists take nanoparticle snapshots February 10th, 2016

Making sense of metallic glass February 9th, 2016

Chiral magnetic effect generates quantum current: Separating left- and right-handed particles in a semi-metallic material produces anomalously high conductivity February 8th, 2016

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Energy

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Host-guest nanowires for efficient water splitting and solar energy storage February 7th, 2016

February 4th, 2016

Automotive/Transportation

Electric-car battery materials could harm key soil bacteria February 11th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Researchers develop completely new kind of polymer: Hybrid polymers could lead to new concepts in self-repairing materials, drug delivery and artificial muscles January 30th, 2016

An alternative to platinum: Iron-nitrogen compounds as catalysts in graphene January 28th, 2016

Fuel Cells

An alternative to platinum: Iron-nitrogen compounds as catalysts in graphene January 28th, 2016

Teijin to Participate in Nano Tech 2016 January 21st, 2016

Fuel cell advance: Research team reports success with low-cost nickel-based catalyst January 18th, 2016

Production of Graphene Oxide Nanosheets to Economize Fuel Cells January 1st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic