Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Molecules Are Sensitive to Their Surroundings

Diffraction studies provided the insights needed to understand key molecules in hydrogen storage
Diffraction studies provided the insights needed to understand key molecules in hydrogen storage

Abstract:
Structure of hydrogen storage molecule solved, once orientation of nearby ions elucidated

Molecules Are Sensitive to Their Surroundings

Richland, WA | Posted on February 8th, 2011

Results: For nearly a century, nobody knew how the little molecule that's in the middle of many of today's hydrogen storage and release concepts was organized. Thanks to an interdisciplinary team of scientists at Pacific Northwest National Laboratory and Los Alamos National Laboratory, the structure of this molecule, known as DADB, has been determined. And DADB's structure was exactly opposite of what was expected in more ways than one.

"The irony," said Dr. Tom Autrey, the PNNL scientist who led the research, "is that the structure could not be that complex." The challenge was in understanding how one structure, containing a pair of nitrogen and boron atoms surrounded by only 12 hydrogen atoms, stretched and twisted in the solid molecular crystal.

Why it matters: Running cars on fossil fuels presents growing problems, economically, politically, and environmentally. Replacing fossil fuels with hydrogen and fuel cells is an attractive option. Determining the structure of DADB, created at the initial stages when hydrogen is released from the popular hydrogen storage material ammonia borane, allows scientists to accurately model and predict complex, molecular reactions in the solid state. Understanding the subtleties of the structure of DADB also provides insights into developing new materials with the perfect properties to store energy in chemical bonds for efficient fuel cell operations.

Methods: The team began by synthesizing the DADB using a new method they developed that allowed the molecular crystal to slowly form at room temperature. They used solid-state nuclear magnetic resonance (NMR) spectroscopy to study the molecule. The NMR spectrum of the molecular crystal was surprisingly different than the NMR spectrum of the molecular complex in solution. The team felt that the hydrogen atoms in the molecular crystal might be influencing the arrangement of atoms.

"Theoreticians couldn't accurately predict the structure, and experimentalists weren't getting all the information needed with NMR," said Dr. Gregory Schenter, a chemical theorist on the study. "So, we used neutron diffraction to see the missing pieces. It took a while, but we got that ‘ah-ha' moment."

With the added diffraction data, they could arrange the atoms in a pattern that explained the results they'd seen. "Mark Bowden solved the 100-year-old puzzle," said Autrey of his PNNL colleague. "He showed how the molecule's structure was affected by the interactions with the neighboring molecules."

This research resulted in two different arrangements of borohydride ions (BH4-) giving the molecule its unique twisted structure.

What's next? This work is part of a series of broader efforts at PNNL to answer the fundamental questions around how to activate hydrogen for use in catalytic reactions as well as energy storage in chemical bonds for use in fuel cell applications. These fundamental studies are needed if the United States is to develop novel methods to store energy from solar and other intermittent clean energy sources.

Acknowledgments: The Department of Energy's Office of Basic Energy Sciences funded this research.

The work was done in DOE's EMSL, a national scientific user facility at PNNL, and the Manuel Lujan Jr. Center operated by Los Alamos National Security LLC.

The work was done by Mark Bowden, David J. Heldebrant, Abhi Karkamkar, Gregory K. Schenter, and Tom Autrey of Pacific Northwest National Laboratory along with Thomas Proffen of Lujan Neutron Scattering Center, Los Alamos National Laboratory.

Reference: Bowden M, DJ Heldebrant, A Karkamkar, T Proffen, GK Schenter, and T Autrey. 2010. "The diammoniate of diborane: Crystal structure and hydrogen release." Chemical Communications 46, 8564-8566.

####

For more information, please click here

Copyright © Pacific Northwest National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles September 17th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch September 17th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles September 17th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Nanoribbon film keeps glass ice-free: Rice University lab refines deicing film that allows radio frequencies to pass September 16th, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Discoveries

Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles September 17th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch September 17th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Announcements

New NPZ100-403 Piezo Stage from nPoint Inc. September 17th, 2014

Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles September 17th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch September 17th, 2014

Tools

New NPZ100-403 Piezo Stage from nPoint Inc. September 17th, 2014

Advanced Light Source Sets Microscopy Record| Berkeley Lab Researchers Achieve Highest Resolution Ever with X-ray Microscopy September 11th, 2014

Researchers Create World’s Largest DNA Origami September 11th, 2014

Development of Algorithm for Accurate Calculation of Average Distance Travelled by Low-Speed Electrons without Energy Loss that Are Sensitive to Surface Structure September 11th, 2014

Energy

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

UT Arlington research uses nanotechnology to help cool electrons with no external sources September 11th, 2014

Excitonic Dark States Shed Light on TMDC Atomic Layers: Berkeley Lab Discovery Holds Promise for Nanoelectronic and Photonic Applications September 11th, 2014

Automotive/Transportation

Next-Gen Luxury RV From Global Caravan Technologies Will Offer MagicView Roof and Windshield Using SPD-SmartGlass Technology From Research Frontiers: Recreational Vehicle Manufacturer Global Caravan Technologies (GCT) Features 28 Square Feet of MagicView™ SPD-SmartGlass September 17th, 2014

Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch September 17th, 2014

Nanoribbon film keeps glass ice-free: Rice University lab refines deicing film that allows radio frequencies to pass September 16th, 2014

‘Small’ transformation yields big changes September 16th, 2014

Fuel Cells

Media Advisory: Minister Rempel to Announce Support for Alberta's Nanotechnology Sector June 20th, 2014

Evolution of a Bimetallic Nanocatalyst June 6th, 2014

University of Surrey collaborates with India and Tata Steel to revolutionise renewable energy March 26th, 2014

Novel membrane reveals water molecules will bounce off a liquid surface: Study may lead to more efficient water-desalination systems, fundamental understanding of fluid flow March 16th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE