Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Seeing the Light

Scientists at Berkeley Lab’s Molecular Foundry have developed a web-based imaging toolkit designed for researchers studying plasmonic and photonic structures. This open-source software is available at www.nanohub.org.
Scientists at Berkeley Lab’s Molecular Foundry have developed a web-based imaging toolkit designed for researchers studying plasmonic and photonic structures. This open-source software is available at www.nanohub.org.

Abstract:
Berkeley Lab Scientists Bring Plasmonic Nanofields Into Focus

Seeing the Light

Berkeley, CA | Posted on February 7th, 2011

In typical plasmonic devices, electromagnetic waves crowd into tiny metal structures, concentrating energy into nanoscale dimensions. Due to coupling of electronics and photonics in these metal nanostructures, plasmonic devices could be harnessed for high-speed data transmission or ultrafast detector arrays. However, studying plasmonic fields in nanoscale devices presents a real roadblock for scientists, as examining these structures inherently alters their behavior.

"Whether you use a laser or a light bulb, the wavelength of light is still too large to study plasmonic fields in nanostructures. What's more, most tools used to study plasmonic fields will alter the field distribution—the very behavior we hope to understand," says Jim Schuck, a staff scientist with Lawrence Berkeley National Laboratory (Berkeley Lab) who works in the Imaging and Manipulation of Nanostructures Facility at the Molecular Foundry.

Light microscopy plays a fundamental role in a scientist's repertoire: the technique is easy to use and doesn't inflict damage to a carefully crafted electronic circuit or delicate biological specimen. However, a typical nanoscale object of interest—such as a strand of DNA or a quantum dot—is well below the wavelength of visible light in size, which means the ability to distinguish one such object from another when they are closely spaced is lost. Scientists are now challenging this limit using ‘localization' techniques, which count the number of photons emanating from an object to help determine its position.

In previous work, Schuck and colleagues at the Molecular Foundry, a U.S. Department of Energy (DOE) Nanoscale Science Research Centers, engineered bowtie-shaped plasmonic devices designed to capture, filter and steer light at the nanoscale. These nano-color sorter devices served as antennae to focus and sort light in tiny spaces to a desired set of colors or energies—crucial for filters and other detectors.

In this latest advance, Schuck and his Berkeley Lab team used their innovative imaging concept to visualize plasmonic fields from these devices with nanoscale resolution. By imaging fluorescence from gold within the bowtie and maximizing the number of photons collected from their bowtie devices, the team was able to glean the position of plasmonic modes—oscillations of charge that result in optical resonance—just a few nanometers apart.

"We wondered whether there was a way to use light already present in our bowties—localized photons—to probe these fields and serve as a reporter," says Schuck. "Our technique is also sensitive to imperfections in the system, such as tiny structural flaws or size effects, suggesting we could use this technique to measure the performance of plasmonic devices in both research and development settings."

In parallel with Schuck's experimental findings, Jeff Neaton, Director of the Molecular Foundry 's Theory of Nanostructured Materials Facility and Alex McLeod, an undergraduate student working at the Foundry, developed a web-based toolkit, designed to calculate images of plasmonic devices with open-source software developed at Massachusetts Institute of Technology. For this study, the researchers simulated adjusting the structure of a double bowtie antenna by a few nanometers to study how changing the size and symmetry of a plasmonic antenna affects its optical properties.

"By shifting their structure by just a few nanometers, we can focus light at different positions inside the bowtie with remarkable certainty and predictability," said McLeod. "This work demonstrates that these nanoscale optical antennae resonate with light just as our simulations predict."

Useful for researchers studying plasmonic and photonic structures, this toolkit will be available for download on nanoHUB, a computational resource for nanoscience and technology created through the National Science Foundation's Network for Computational Nanotechnology.

"This work really exemplifies the very best of what the Molecular Foundry is about," said Neaton, who is also Acting Deputy Director of Berkeley Lab's Materials Sciences Division. "Three separate Foundry facilities—Imaging, Nanofabrication and Theory—collaborated on a significant advance in our understanding of how visible light can be localized, manipulated, and imaged at the nanoscale."

A paper reporting this research titled, "Non-perturbative visualization of nanoscale plasmonic field distributions via photon localization microscopy," appears in Physical Review Letters and is available to subscribers online. Co-authoring the paper with Schuck, McLeod and Neaton were Alexander Weber-Bargioni, Zhaoyu Zhang, Scott Dhuey, Bruce Harteneck and Stefano Cabrini.

Portions of this work at the Molecular Foundry were supported by DOE's Office of Science. Support for this work was also provided by the National Science Foundation through the Network for Computational Nanotechnology.

The Molecular Foundry is one of the five DOE Nanoscale Science Research Centers (NSRCs), national user facilities for interdisciplinary research at the nanoscale, supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos National Laboratories. For more information about the DOE NSRCs, please visit nano.energy.gov.

####

About Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory is a U.S. Department of Energy (DOE) national laboratory managed by the University of California for the DOE Office of Science. Berkeley Lab provides solutions to the world’s most urgent scientific challenges including sustainable energy, climate change, human health, and a better understanding of matter and force in the universe. It is a world leader in improving our lives through team science, advanced computing, and innovative technology.

For more information, please click here

Contacts:
Aditi Risbud
(510)486-4861

Copyright © Lawrence Berkeley National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Software

How things coil: Researchers discover that simulation technology designed for Hollywood can be used as a predictive tool for understanding fundamental engineering problems September 29th, 2014

Terabyte Photonic Dataset Sale July 30th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

Physicists Use Computer Models to Reveal Quantum Effects in Biological Oxygen Transport: The team solved a long-standing question by explaining why oxygen – and not deadly carbon monoxide – preferably binds to the proteins that transport it around the body. July 17th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

HP Supercomputer at NREL Garners Top Honor October 19th, 2014

Possible Futures

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanocoatings Market By Product Is Expected To Reach USD 8.17 Billion By 2020: Grand View Research, Inc. October 15th, 2014

Perpetuus Carbon Group Receives Independent Verification of its Production Capacity for Graphenes at 140 Tonnes per Annum: Perpetuus Becomes the First Manufacturer in the Sector to Allow Third Party Audit October 7th, 2014

Academic/Education

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Raytheon, UMass Lowell open on-campus research institute: Industry leader’s researchers to collaborate with faculty, students to move key technologies forward through first-of-its-kind partnership October 11th, 2014

SUNY Colleges of Nanoscale Science and Engineering and National Institute for Occupational Safety and Health Announce Expanded Partnership October 2nd, 2014

Yale University and Leica Microsystems Partner to Establish Microscopy Center of Excellence: Yale Welcomes Scientists to Participate in Core Facility Opening and Super- Resolution Workshops October 20 Through 31, 2014 September 30th, 2014

Announcements

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

Tools

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

New Grand ARM Transmission Electron Microscope Offers Highest Commercially-Available Atomic Resolution of 63 Picometers October 17th, 2014

Nanodevices for clinical diagnostic with potential for the international market: The development is based on optical principles and provides precision and allows saving vital time for the patient October 15th, 2014

Unique catalysts for hydrogen fuel cells synthesized in ordinary kitchen microwave oven October 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE