Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > New nanoparticles make blood clots visible

A blood vessel (top) with ruptured atherosclerotic plaque, shown in yellow, is developing a blood clot. The nanoparticles, shown in blue and black, are targeted to a protein in the blood clot called fibrin, shown in light blue. A traditional CT image (bottom left) shows no difference between the blood clot and the calcium in the plaque, making it unclear whether this image shows a clot that should be treated. A spectral CT image (bottom right) “sees” the bismuth nanoparticles targeted to fibrin in green, differentiating it from calcium, still shown in white, in the plaque.  Wiley-VCH Verlag GmbH & Co. KGaA.
A blood vessel (top) with ruptured atherosclerotic plaque, shown in yellow, is developing a blood clot. The nanoparticles, shown in blue and black, are targeted to a protein in the blood clot called fibrin, shown in light blue. A traditional CT image (bottom left) shows no difference between the blood clot and the calcium in the plaque, making it unclear whether this image shows a clot that should be treated. A spectral CT image (bottom right) “sees” the bismuth nanoparticles targeted to fibrin in green, differentiating it from calcium, still shown in white, in the plaque. Wiley-VCH Verlag GmbH & Co. KGaA.

Abstract:
Researchers at Washington University School of Medicine in St. Louis report that they have designed nanoparticles that find clots and make them visible to a new kind of X-ray technology

By Julia Evangelou Strait

New nanoparticles make blood clots visible

St. Louis, MO | Posted on February 4th, 2011

For almost two decades, cardiologists have searched for ways to see dangerous blood clots before they cause heart attacks.

Now, researchers at Washington University School of Medicine in St. Louis report that they have designed nanoparticles that find clots and make them visible to a new kind of X-ray technology.

According to Gregory Lanza, MD, PhD, a Washington University cardiologist at Barnes-Jewish Hospital, these nanoparticles will take the guesswork out of deciding whether a person coming to the hospital with chest pain is actually having a heart attack.

"Every year, millions of people come to the emergency room with chest pain. For some of them, we know it's not their heart. But for most, we're not sure," says Lanza, a professor of medicine. When there is any doubt, the patient must be admitted to the hospital and undergo tests to rule out or confirm a heart attack.

"Those tests cost money and they take time," Lanza says.

Rather than an overnight stay to make sure the patient is stable, this new technology could reveal the location of a blood clot in a matter of hours.

Spectral CT

The nanoparticles are designed to be used with a new type of CT scanner that is capable of "seeing" metals in color. The new technology, called spectral CT, uses the full spectrum of the X-ray beam to differentiate objects that would be indistinguishable with a regular CT scanner that sees only black and white.

Lanza says the new scanner takes advantage of the same physics that astronomers use to look at the light from a star and tell what metals it contains.

"They're looking at the X-ray spectrum, and the X-ray spectrum tells them what metals are there," he says. "That's exactly what we do."

Bismuth nanoparticles

In this case, the metal in question is bismuth. Dipanjan Pan, PhD, research assistant professor of medicine, designed a nanoparticle that contains enough bismuth for it to be seen by the spectral CT scanner.

"Each nanoparticle is carrying a million atoms of bismuth," Lanza says. Since CT is a relatively insensitive imaging technique, this sheer quantity of metal is necessary for the particles to be visible to the scanner.

But bismuth is a toxic heavy metal, Pan says. It can't be injected into the body on its own. Instead, Pan used a compound made of bismuth atoms attached to fatty acid chains that can't come apart in the body. He then dissolved this compound in a detergent and encapsulated the mixture in a phospholipid membrane. Much like oil droplets suspended in a shaken vinaigrette, these particles self-assemble with the bismuth compound at the core.

As Pan showed in a mouse model, the design of the nanoparticles also allows the body to break them apart and release the inner bismuth compound in a safe form.

Once the nanoparticles carried enough bismuth to be visible to the scanner, Pan added a molecule to the particles' surface that seeks out a protein called fibrin. Fibrin is common in blood clots but is not found elsewhere in the vasculature.

"If you're having a heart attack, the lining of your coronary artery has ruptured, and a clot is forming to repair it," Lanza says. "But that clot is starting to narrow the vessel so blood can't get by. Now we have a nanoparticle that will see that clot."

A spectral CT image with the bismuth nanoparticles targeted to fibrin will provide the same information as a traditional black and white CT image, but the fibrin in any blood clots will show up in a color, such as yellow or green, solving the problem of calcium interference common to traditional CT scanners.

The spectral CT scanner used in this study is still a prototype instrument, developed by Philips Research in Hamburg, Germany. The nanoparticles have only been tested in rabbits and other animal models, but early results show success in distinguishing blood clots from calcium interference.

Saving lives

More than simply confirming a heart attack, the new nanoparticles and spectral CT scanner can show a clot's exact location.

Today, even if doctors determine the patient is having a heart attack, they can't locate the clot without admitting the patient to the cardiac catheterization lab, inserting a dye and looking for narrow plaque-filled arteries they could open with stents. But Lanza says looking for narrow arteries doesn't solve all the problems.

"The ones that have very narrow openings are not the worrisome ones," Lanza says. "We find those in the cardiac catheterization lab and we open them up."

What is worrisome is when blood is free to flow through the arteries, but there is unstable plaque on the artery wall, what Lanza calls "moderate-grade disease."

"Most people's heart attacks or strokes are from moderate-grade disease that breaks off and all of a sudden blocks an artery," Lanza says. "It's what happened to NBC newsman Tim Russert. You need something that tells you there is ruptured plaque even when the vessel isn't very narrow."

Since this nanoparticle finds and sticks to fibrin in the vessels, it would allow doctors to see problems that were previously difficult or impossible to detect.

With this imaging technique, Lanza predicts new approaches to treating coronary disease. Unstable plaque that doesn't restrict much blood flow does not require an expensive stent to prop the vessel open. Instead, Lanza foresees technologies that might act like Band-Aids, sealing weak spots in the vessel walls.

"Today, you wouldn't know where to stick the Band-Aid," Lanza says. "But spectral CT imaging with bismuth nanoparticles would show the exact location of clots in the vessels, making it possible to prevent the dangerous rupture of unstable plaque."

Pan D, Roessl E, Schlomka JP, Caruthers SD, Senpan A, Scott MJ, Allen JS, Zhang H, Hu G, Gaffney PJ, Choi ET, Rasche V, Wickline SA, Proksa R, Lanza GM. Computed Tomography in color: NanoK-enhanced spectral CT molecular imaging. Angewandte Chemie, International Edition, Dec. 10, 2010.

This work was supported by grants from the American Heart Association, National Cancer Institute, Bioengineering Research Partnership and the National Heart, Lung, and Blood Institute.

The spectral CT prototype is on loan to Washington University from Philips Research in Hamburg, Germany, for codevelopment of the scanner, software and nanoparticles.

####

About Washington University School of Medicine in St. Louis
Washington University School of Medicine’s 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked fourth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

For more information, please click here

Contacts:
Julia Evangelou Strait
Senior Medical Sciences Writer
(314) 286-0141

Copyright © Washington University School of Medicine in St. Louis

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Govt.-Legislation/Regulation/Funding/Policy

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Leading European communications companies and research organizations have launched an EU project developing the future 5th Generation cellular mobile networks August 28th, 2014

New technique uses fraction of measurements to efficiently find quantum wave functions August 28th, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Academic/Education

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

SEMATECH and Newly Merged SUNY CNSE/SUNYIT Launch New Patterning Center to Further Advance Materials Development: Center to Provide Access to Critical Tools that Support Semiconductor Technology Node Development August 7th, 2014

Oxford Instruments Asylum Research and the Center for Nanoscale Systems at Harvard University Present a Workshop on AFM Nanomechanical and Nanoelectrical Characterization, Aug. 21-22 August 6th, 2014

Self Assembly

Nanocubes Get in a Twist : Competing forces coax nanocubes into helical structures August 11th, 2014

Self-assembly of gold nanoparticles into small clusters August 4th, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Berkeley Lab researchers create nanoparticle thin films that self-assemble in 1 minute June 9th, 2014

Nanomedicine

Nanoscale assembly line August 29th, 2014

Copper shines as flexible conductor August 29th, 2014

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

PetLife Comments on CNN Story on Scorpion Venom Health Benefits August 27th, 2014

Announcements

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Rice physicist emerges as leader in quantum materials research: Nevidomskyy wins both NSF CAREER Award and Cottrell Scholar Award August 20th, 2014

Oxford Instruments Asylum Research Receives the 2014 Microscopy Today Innovation Award for blueDrive Photothermal Excitation August 18th, 2014

AQUANOVA receives Technology Leadership Award 2014 FROST & SULLIVAN honors NovaSOL® Technology again August 12th, 2014

Focal blood-brain-barrier disruption with high-frequency pulsed electric fields August 12th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE