Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > UMD Advance Lights Possible Path to Creating Next Gen Computer Chips

Abstract:
University of Maryland researchers have made a breakthrough in the use of visible light for making tiny integrated circuits. Though their advance is probably at least a decade from commercial use, they say it could one day make it possible for companies like Intel to continue their decades long tread of making ever smaller, faster, and cheaper computer chips.

UMD Advance Lights Possible Path to Creating Next Gen Computer Chips

College Park, MD | Posted on February 4th, 2011

For some 50 years, the integrated circuits, or chips, that are at the heart of computers, smart phones, and other high-tech devices have been created through a technique known as photolithography, in which each computer chip is built up in layers.

In photolithography, each layer of a conductive material (metal, treated silicon, etc,) is deposited on a chip and coated with a chemical that hardens when exposed to light. Light shining through a kind of stencil know as a mask projects a detailed pattern onto the photoresist, which hardens where it's exposed. Then, the unhardened areas of photoresist and underlying metal are etched away with a chemical. Finally, the remaining photoresist is etched away using a different chemical treatment, leaving an underlying layer of metal with the same shape as the mask.

However, fitting more and more circuits on each chip has meant making smaller and smaller circuits. In fact, features of circuits in today's computer chips are significantly smaller than the wavelength of visible light. As a result, manufacturers have gone to using shorter and shorter wavelengths of light (radiation), or even charged particles, to enable them to make these circuits.

University of Maryland chemistry Professor John Fourkas and his research group recently introduced a technique called RAPID lithography that makes it possible to use visible light to attain lithographic resolution comparable to (and potentially even better than) that obtained with shorter wave length radiation.

"Our RAPID technique could offer substantial savings in cost and ease of production," Fourkas said. "Visible light is far less expensive to generate, propagate and manipulate than shorter wavelength forms of electromagnetic radiation, such as vacuum ultraviolet or X-rays. And using visible light would not require the use of the high vacuum conditions needed for current short wavelength technologies."

The key to RAPID is the use of a special "photoinitiator" that can be excited, or turned on, by one laser beam and deactivated by another. In new work just published online by Nature Chemistry, Fourkas and his group report three broad classes of common dye molecules that can be used for RAPID lithography.

In earlier work, Fourkas and his team used a beam of ultrafast pulses for the excitation step and a continuous laser for deactivation. However, they say that in some of their newly reported materials deactivation is so efficient that the ultrafast pulses of the excitation beam also deactivate molecules. This phenomenon leads to the surprising result that higher exposures can lead to smaller features, leading to what the researchers call a proportional velocity (PROVE) dependence.

"PROVE behavior is a simple way to identify photoinitiators that can be deactivated efficiently," says Fourkas, "which is an important step towards being able to use RAPID in an industrial setting."

By combining a PROVE photoinitiator with a photoinitiator that has a conventional exposure dependence, Fourkas and co-workers were also able to demonstrate a photoresist for which the resolution was independent of the exposure over a broad range of exposure times.

"Imagine a photographic film that always gives the right exposure no matter what shutter speed is used," says Fourkas. "You could take perfect pictures every time. By the same token, these new photoresists are extremely fault-tolerant, allowing us to create the exact lithographic pattern we want time after time."

According to Fourkas, he and his team have more research to do before thinking about trying to commercialize their new RAPID technology. "Right now we're using the technique for point-by-point lithography. We need to get it to the stage where we can operate on an entire silicon wafer, which will require more advances in chemistry, materials and optics. If we can make these advances -- and we're working hard on it -- then we will think about commercialization."

Another factor in time to application, he explained, is that his team's approach is not a R&D direction that chip manufacturers had been looking at before now. As a result, commercial use of the RAPID approach is probably at least ten years down the road, he said.

Multiphoton photoresists giving nanoscale resolution that is inversely dependent on exposure time was authored by Michael P. Stocker, Linjie Li, Ravael R. Gattass and John T. Fourkas.

The authors acknowledge the support of the Maryland NanoCenter and its NispLab. The NispLab is supported in part by the National Science Foundation (NSF) as a Materials Research Science and Engineering Center (MRSEC) Shared Experimental Facility. This work was supported in part by the UMD-NSF-MRSEC.

To learn more about research in the Fourkas laboratories, visit www2.chem.umd.edu/groups/fourkas

####

Contacts:
Lee Tune
301 405 4679

Copyright © University of Maryland

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Rare-earths become water-repellent only as they age March 22nd, 2017

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

CRMGroup in Belgium uses a Deben three point bending stage in the development of new steel & coated steel products for automotive and other industrial applications March 21st, 2017

Electro-optical switch transmits data at record-low temperatures: Operating at temperatures near absolute zero, switch could enable significantly faster data processing with lower power consumption March 20th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Electro-optical switch transmits data at record-low temperatures: Operating at temperatures near absolute zero, switch could enable significantly faster data processing with lower power consumption March 20th, 2017

AIM Photonics Welcomes Coventor as Newest Member: US-Backed Initiative Taps Process Modeling Specialist to Enable Manufacturing of High-Yield, High-Performance Integrated Photonic Designs March 16th, 2017

Researchers develop groundbreaking process for creating ultra-selective separation membranes: Discovery could greatly improve energy-efficiency of separation and purification processes in the chemical and petrochemical industries March 15th, 2017

Nanogate Expands Sustainability Management: Nanogate publishes a statement of compliance with the German Sustainability Code for the first time March 15th, 2017

Possible Futures

Rare-earths become water-repellent only as they age March 22nd, 2017

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

Electro-optical switch transmits data at record-low temperatures: Operating at temperatures near absolute zero, switch could enable significantly faster data processing with lower power consumption March 20th, 2017

Nanoparticle paves the way for new triple negative breast cancer drug March 20th, 2017

Academic/Education

AIM Photonics Welcomes Coventor as Newest Member: US-Backed Initiative Taps Process Modeling Specialist to Enable Manufacturing of High-Yield, High-Performance Integrated Photonic Designs March 16th, 2017

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Chip Technology

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

Electro-optical switch transmits data at record-low temperatures: Operating at temperatures near absolute zero, switch could enable significantly faster data processing with lower power consumption March 20th, 2017

UC researchers use gold coating to control luminescence of nanowires: University of Cincinnati physicists manipulate nanowire semiconductors in pursuit of making electronics smaller, faster and cheaper March 17th, 2017

AIM Photonics Welcomes Coventor as Newest Member: US-Backed Initiative Taps Process Modeling Specialist to Enable Manufacturing of High-Yield, High-Performance Integrated Photonic Designs March 16th, 2017

Nanoelectronics

UC researchers use gold coating to control luminescence of nanowires: University of Cincinnati physicists manipulate nanowire semiconductors in pursuit of making electronics smaller, faster and cheaper March 17th, 2017

A SOI wafer is a suitable substrate for gallium nitride crystals: Improved characteristics in power electronics and radio applications can be achieved by using a SOI wafer for gallium nitride growth March 4th, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

Discoveries

Rare-earths become water-repellent only as they age March 22nd, 2017

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

Electro-optical switch transmits data at record-low temperatures: Operating at temperatures near absolute zero, switch could enable significantly faster data processing with lower power consumption March 20th, 2017

Nanoparticle paves the way for new triple negative breast cancer drug March 20th, 2017

Announcements

Rare-earths become water-repellent only as they age March 22nd, 2017

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

CRMGroup in Belgium uses a Deben three point bending stage in the development of new steel & coated steel products for automotive and other industrial applications March 21st, 2017

Electro-optical switch transmits data at record-low temperatures: Operating at temperatures near absolute zero, switch could enable significantly faster data processing with lower power consumption March 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project