Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Plankton inspires creation of stealth armour for slow release microscopic drug vesicles

Abstract:
The ability of some forms of plankton and bacteria to build an extra natural layer of nanoparticle-like armour has inspired chemists at the University of Warwick to devise a startlingly simple way to give drug bearing polymer vesicles (microscopic polymer based sacs of liquid) their own armoured protection.

Plankton inspires creation of stealth armour for slow release microscopic drug vesicles

UK | Posted on February 3rd, 2011

The Warwick researchers have been able to decorate these hollow structures with a variety of nanoparticles opening a new strategy in the design of vehicles for drug release, for example by giving the vesicle "stealth" capabilities which can avoid the body's defences while releasing the drug.

Advances in polymerisation have led to a surge in the creation of vesicles made from polymer molecules. Such vesicles have interesting chemical and physical properties which makes these hollow structures potential drug delivery vehicles.

The University of Warwick team were convinced that even more strength, and interesting tailored properties, could be given to the vesicles if they could add an additional layer of colloidal armour made from a variety of nanoparticles.

Lead researcher on the University of Warwick team Associate Professor Stefan Bon said:

"We took our inspiration from nature, in how it adds protection and mechanical strength in certain classes of cells and organisms. In addition to the mechanical strength provided by the cytoskeleton of the cell, plants, fungi, and certain bacteria have an additional cell wall as outermost boundary. Organisms that particularly attracted our interest were those with a cell wall composed of an armour of colloidal objects - for instance bacteria coated with S-layer proteins, or phytoplankton, such as the coccolithophorids, which have their own CaCO3-based nano-patterned colloidal armour"

The Warwick researchers hit on a surprisingly simple and highly effective method of adding a range of different types of additional armour to the polymer based vesicles. One of those armour types was a highly regular packed layer of microscopic polystyrene balls. This configuration meant the researchers could design a vesicle which had an additional and precise permeable reinforced barrier for drug release, as a result of the crystalline-like ordered structure of the polystyrene balls.

The researchers also succeeded in using the same technique to add a gelatine-like polymer to provide a "stealth" armour to shield vesicles from unwanted attention from the body's immune system while it slowly released its drug treatment. This particular coating (a poly((ethyl acrylate)-co-(methacrylic acid)) hydrogel) absorbs so much surrounding water into its outer structure that it may be able to fool the body's defence mechanism into believing it is in fact just water.

The Warwick researchers had the idea of simply giving their chosen colloidal particles, or latex, based armour the opposite charge to that of the polymer vesicles, to bind them together. This turned out to be even more effective and easy to manipulate and tailor than they even they had hoped for. However the researchers needed a new way of actually observing the vesicles to see if their plan had worked. Previous observational methods required researchers to dry out the vesicles before examining then under an electron microscope - but this seriously deformed the vesicles and thus provide little useful data. However the University of Warwick had recently acquired a cryo electron microscope thanks to funding from the Science City programme. This allowed the research team to quickly freeze the vesicles to -150oc preserving the vesicles shape before observation by the electron microscope. This revealed that the researchers' simple charge based method had worked exactly as planned.

The research has just been published in a paper entitled Polymer Vesicles with a Colloidal Armor of Nanoparticles by Rong Chen, Daniel J. G. Pearce, Sara Fortuna, David L. Cheung, and Stefan A. F. Bon* Department of Chemistry, University of Warwick in the current Journal of the American Chemical Society dx.doi.org/10.1021/ja110359f

####

For more information, please click here

Contacts:
Dr.ir. Stefan A. F. Bon
Department of Chemistry
University of Warwick, CV4 7AL, UK
Tel: (+44) (0)24 76 574009


Peter Dunn
Head of Communications,
Communications Office,
University of Warwick, Coventry, CV4 8UW, United Kingdom
Tel: (+44) (0)24 7652 3708
Mobile: (+44) (0)7767 655860

Copyright © University of Warwick

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Possible Futures

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Academic/Education

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

Nanomedicine

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

Keystone Nano Announces FDA Approval Of Investigational New Drug Application For Ceramide NanoLiposome For The Improved Treatment Of Cancer January 10th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Arrowhead Provides Response to New Minority Shareholder Announcement January 7th, 2017

Announcements

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Nanobiotechnology

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

Keystone Nano Announces FDA Approval Of Investigational New Drug Application For Ceramide NanoLiposome For The Improved Treatment Of Cancer January 10th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project