Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > A Matter Of Timing: New Strategies For Debugging Electronics

Azadeh Davoodi, Assistant Professor, Department of Electrical and Computer Engineering, University of Wisconsin - Madison
Azadeh Davoodi, Assistant Professor, Department of Electrical and Computer Engineering, University of Wisconsin - Madison

Abstract:
University of Wisconsin-Madison Electrical and Computer Engineering assistant professor Azadeh Davoodi is one of the first people to look at solutions for timing errors, and she has received a 2011 Faculty Early Career Development Award (CAREER) and grant to support her work.

A Matter Of Timing: New Strategies For Debugging Electronics

Madison, WI | Posted on February 2nd, 2011

The components that make up the integrated circuits in electronic devices are nano-sized and number in the billions. Sometimes "bugs" lurking in these complex systems can emerge and cause significant performance errors.

One category of electronic bugs that can occur after a chip is fabricated is known as timing errors. These errors can cause components to slow down and take longer to execute operations. As components continue to become smaller, the process of preventing and solving timing errors is becoming ever more complex, increasing the time it takes to send new products to market.

University of Wisconsin-Madison Electrical and Computer Engineering assistant professor Azadeh Davoodi is one of the first people to look at solutions for timing errors, and she has received a 2011 Faculty Early Career Development Award (CAREER) and grant to support her work.

Sponsored by the National Science Foundation, CAREER awards recognize faculty members who are at the beginning of their academic careers and have developed creative projects that effectively integrate advanced research and education.

Integrated circuits go through a rigorous testing process to find and correct bugs that can cause performance errors. However, the small size and sheer volume of components mean chips realistically cannot be entirely validated before fabrication.

"These errors occur, not because the circuit isn't functioning correctly, but because it fails to operate correctly at the desired speed," Davoodi says. "The nanoscale components in the chip are so small they can have weird physical behaviors that can only be detected after they are fabricated."

The validation process involves manually opening up a chip and examining billions of transistors, which is extremely time-consuming. Timing errors often are interdependent, meaning they emerge only when certain operations are performed together. This means testing for timing errors requires predicting the chip's behavior during a vast number of possible operations and combinations of operations.

It can several months to find errors and alter chips during the validation process. Most of this time is spent dealing with timing errors, so while timing errors are not the most common problems, they are a significant factor in delaying the time to market of new chips.

Davoodi's team will develop special sensor components that can be added to a chip's design, as well as methods to analyze measurements from the components. The new components will provide custom timing information for a particular chip design, allowing developers to predict, detect and even solve errors more quickly.

Instead of manually opening up and examining chips, developers could simply use data from the sensor components as a compact representation of important areas of the design that may be causing timing errors.

"We want to increase the timing observability inside the chip," Davoodi says.

In addition to supporting cutting-edge research, CAREER awards also fund innovative outreach programs. Along with developing technical coursework to introduce undergraduate students to sophisticated software programming, Davoodi is creating a unique course module that looks at some of the non-technical aspects of computer engineering that could inspire students to pursue the field.

The course module will be part of an introductory engineering course called Introduction to Society's Engineering Grand Challenges and explore the One Laptop Per Child project. The module will look at the societal, ethical and political implications of disseminating and using technology in developing countries.

"These aspects of the case study can be used as a different angle to interest students, particularly women, to get excited about engineering," Davoodi says.

####

For more information, please click here

Contacts:
Sandra Knisely
(608) 265-8592


Azadeh Davoodi
(608) 265-1145


Copyright © University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Academic/Education

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Raytheon, UMass Lowell open on-campus research institute: Industry leaderís researchers to collaborate with faculty, students to move key technologies forward through first-of-its-kind partnership October 11th, 2014

SUNY Colleges of Nanoscale Science and Engineering and National Institute for Occupational Safety and Health Announce Expanded Partnership October 2nd, 2014

Chip Technology

Sussex physicists find simple solution for quantum technology challenge October 28th, 2014

Watching the hidden life of materials: Ultrafast electron diffraction experiments open a new window on the microscopic world October 27th, 2014

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Sensors

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

MEMS & Sensors Technology Showcase: Finalists Announced for MEMS Executive Congress US 2014 October 23rd, 2014

Nanoelectronics

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Announcements

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

New nanodevice to improve cancer treatment monitoring October 27th, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE