Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nanosilver: a new name – well known effects

TEM image of silver nanoparticles in the algicide Algaedyn used for swimming pools. Courtesy EMPA
TEM image of silver nanoparticles in the algicide Algaedyn used for swimming pools. Courtesy EMPA

Abstract:
At work against microbes for over a century

Nanosilver: a new name – well known effects

Switzerland | Posted on February 1st, 2011

Nanosilver is not a new discovery by nanotechnologists - it has been used in various products for over a hundred years, as is shown by a new Empa study. The antimicrobial effects of minute silver particles, which were then known as "colloidal silver", were known from the earliest days of its use.

As early as the 19th century minute silver particles were used, for example in antibacterial water filters.

Numerous nanomaterials are currently at the focus of public attention. In particular silver nanoparticles are being investigated in detail, both by scientists as well as by the regulatory authorities. The assumption behind this interest is that they are dealing with a completely new substance. However, Empa researchers Bernd Nowack and Harald Krug, together with Murray Heights of the company HeiQ have shown in a paper recently published in the journal Environmental Science & Technology that nanosilver is by no means the discovery of the 21st century. Silver particles with diameters of seven to nine nm were mentioned as early as 1889. They were used in medications or as biocides to prevent the growth of bacteria on surfaces, for example in antibacterial water filters or in algaecides for swimming pools.

The material has always been the same

The nanoparticles were known as "colloidal silver" in those days, but what was meant was the same then as now - extremely small particles of silver. The only new aspect is the use today of the prefix "nano". "However," according to Bernd Nowack, "nano does not mean something new, and nor does it mean something that is harmful." When "colloidal silver" became available on the market in large quantities in the 1920s it was the topic of numerous studies and subject to appropriate regulation by the authorities. Even in those days the significance of the discovery of nanoparticles and how they worked was realized. "That is not to say that the possible side-effects of nanoparticles on humans and the environment should be played down or ignored," adds Nowack. It is important to characterize in exact detail the material properties of nanosilver and not just to believe unquestioningly the doubts and reservations surrounding the product.

Nanosilver has different effects than silver

The term nanoparticle is understood to refer to particles whose dimensions are less than 100 nm. Because of their minute size nanoparticles have different properties than those of larger particles of the same material. For example, for a given volume nanoparticles have a much greater surface area, so they are frequently much more reactive than the bulk material. In addition, even in small quantities nanosilver produces more silver ions than solid silver. These silver ions are toxic to bacteria. Whether or not nanosilver represents a risk to humans and the environment is currently the subject of a great deal of investigation.

Literature

120 Years of Nanosilver History: Implications for Policy Makers, Bernd Nowack, Harald F. Krug, Murray Height, Environ Sci Technol, 2011, DOI: 10.1021/es103316q

Nanosilver in wastewater treatment plants

Currently there are hundreds of products in circulation which contain silver nanoparticles. Examples include cosmetics, food packaging materials, disinfectants, cleaning agents and - not least - antibacterial socks and underwear. Every year some 320 tonnes of nanosilver are used worldwide, some of which is released into wastewater, thus finding its way into natural water recirculation systems. What effects solar particles have on rivers, soil and the organisms that live in them has not yet been clarified in detail. A commentary by Bernd Nowack in the scientific journal "Science" discusses the implications of the newest studies on nanosilver in sewage treatment plants. More than 90% remains bound in the sewage sludge in the form of silver sulfide, a substance which is extremely insoluble and orders of magnitude less poisonous than free silver ions. It apparently does not matter what the original form of the silver in the wastewater was, whether as metallic nanoparticles, as silver ions in solution or as precipitated insoluble silver salts. "As far as the environmental effects are concerned, it seems that nanosilver in consumer goods is no different than other forms of silver and represents only a minor problem for eco-systems," says Nowack. What is still to be clarified, however, is in what form the unbound silver is present in the treated water released from sewage works, and what happens to the silver sulfide in natural waters. Is this stable and unreactive or is it transformed into other forms of silver?

Nanosilver Revisited Downstream, Bernd Nowack, Science, 2010, Vol. 330 no. 6007, pp. 1054-1055, DOI: 10.1126/science.1198074

####

For more information, please click here

Contacts:
PD Dr. Bernd Nowack
Technology and Society
Phone +41 71 274 76 92


Nadja Kröner
Communication
Phone +41 44 823 49 16


Beatrice Huber
Communication
Phone +41 44 823 47 33

Copyright © EMPA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

ACS Biomaterials Science & Engineering™: Brand-new journal names editor July 29th, 2014

Harris & Harris Group Invests in Unique NYC Biotech Accelerator July 29th, 2014

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Preparing for Nano

Durnham University's DEEPEN project comes to a close September 26th, 2012

Technical Seminar at ANFoS 2012 August 22nd, 2012

Nanotechnology shows we can innovate without economic growth April 12th, 2012

Thailand to host NanoThailand 2012 December 18th, 2011

Govt.-Legislation/Regulation/Funding/Policy

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Seeing is bead-lieving: Rice University scientists create model 'bead-spring' chains with tunable properties July 28th, 2014

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Academic/Education

Haydale Announces Collaboration Agreement with Swansea University’s Welsh Centre for Printing and Coatings (WCPC) July 12th, 2014

STFC takes delivery of the 100th Hitachi Tabletop SEM in the UK July 3rd, 2014

Innovation Management and the Emergence of the Nanobiotechnology Industry July 1st, 2014

Albany NanoCollege Faculty Member Selected as Editor-in-Chief of the Prestigious Journal of Electronic Materials July 1st, 2014

Materials/Metamaterials

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Iranian Scientists Use Waste Cotton Fibers to Produce Cellulose Nanoparticles July 29th, 2014

Seeing is bead-lieving: Rice University scientists create model 'bead-spring' chains with tunable properties July 28th, 2014

Environment

Iranian Scientists Use Waste Cotton Fibers to Produce Cellulose Nanoparticles July 29th, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Researchers Use Various Zinc Oxide Nanostructures to Boost Efficiency of Water Purification Process July 13th, 2014

Using Sand to Improve Battery Performance: Researchers develop low cost, environmentally friendly way to produce sand-based lithium ion batteries that outperform standard by three times July 8th, 2014

Water

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Researchers Use Various Zinc Oxide Nanostructures to Boost Efficiency of Water Purification Process July 13th, 2014

Harris & Harris Group Continues Its Blog Series to Highlight Most Impactful Portfolio Companies With Produced Water Absorbents, Inc. July 9th, 2014

LED Lamps Implemented in Removal of Pollutants from Water by Using Nanocatalysts July 1st, 2014

Safety-Nanoparticles/Risk management

NNCO Announces an Interactive Webinar: Progress Review on the Coordinated Implementation of the National Nanotechnology Initiative 2011 Environmental, Health, and Safety Research Strategy July 23rd, 2014

Development of an interactive tool for the implementation of environmental legislation for nanoparticles manufacturers July 4th, 2014

FDA issues guidance on use of nanotechnology in foods July 1st, 2014

Nano-coatings release almost no nano-particles: Silver in the washing machine June 30th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE