Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > EU-funded team puts new semi-conductor material to the test

Abstract:
The electronic chips of the future might not be made of silicon or even graphene but of a material called molybdenite (MoS2). EU-funded research presented in the journal Nature Nanotechnology demonstrates that molybdenite is a highly effective semi-conductor that could be used to make transistors both smaller and more energy efficient.

EU-funded team puts new semi-conductor material to the test

EU | Posted on February 1st, 2011

EU support for the work came from the 5-year FLATRONICS ('Electronic devices based on nanolayers') project, a EUR 1.8 million European Research Council (ERC) Starting Grant awarded to Professor Andras Kis of the Laboratory of Nanoscale Electronics and Structures (LANES) at the Ecole Polytechnique Fédérale de Lausanne (EPFL) in Switzerland in 2009. ERC grants are channelled through the Ideas Programme of the Seventh Framework Programme (FP7).

Molybdenite is a mineral readily available in nature. Currently its main uses are as an element in steel alloys and as an additive in lubricants. Until now, its potential as a semi-conductor has remained largely unexplored.

'It's a two-dimensional material, very thin and easy to use in nanotechnology,' says Professor Kis, who led the current study. 'It has real potential in the fabrication of very small transistors, light-emitting diodes (LEDs) and solar cells.'

According to Professor Kis and his colleagues, molybdenite offers significant advantages over silicon, which is widely used in electronics, and graphene, which is the most widely studied two-dimensional material and is commonly viewed as the electronics material of the future.

Silicon is a three-dimensional material, and so is more voluminous than molybdenite that can be fabricated in monolayers. 'In a 0.65-nanometre-thick sheet of MoS2, the electrons can move around as easily as in a 2-nanometre-thick sheet of silicon, but it's not currently possible to fabricate a sheet of silicon as thin as a monolayer sheet of MoS2,' explains Professor Kis.

Furthermore, transistors based on molybdenite would consume 100,000 times less energy in their standby state than conventional silicon transistors. This is because turning a transistor on and off requires a semi-conductor material with a 'band gap'. In physics, 'bands' are used as a way of describing the energy of electrons in a material. In semi-conductors, the term 'band gap' refers to the electron-free spaces between these bands. If the gap is neither too big nor too small, some electrons can jump across the gap, thereby offering researchers a way of controlling the electrical behaviour of the material and turning it on and off. Molybdenite has a 1.8 electron-volt band gap, making it ideal for turning transistors on and off.

Molybdenite's band gap also gives it the edge over graphene, which does not have a band gap in its pristine state. Although it is possible to make graphene that has a band gap, this increases the fabrication complexity and causes other problems.

'Our results provide an important step towards the realization of electronics and low-standby-power integrated circuits based on two-dimensional materials. Being a thin, transparent semiconducting material, MoS2 monolayers also present a wealth of new opportunities in areas that include mesoscopic physics, optoelectronics and energy harvesting,' the researchers conclude.

'With the possibility of fabricating large-area circuits using solution-based processing, our finding could be important for producing electronic devices that could combine the ease of processing associated with organic conductors with performance figures commonly associated with silicon-based electronics.'

For more information, please visit:

Ecole Polytechnique Fédérale de Lausanne (EPFL): www.epfl.ch

Nature Nanotechnology: www.nature.com/naturenanotechnology

European Research Council (ERC): erc.europa.eu

####

For more information, please click here

Copyright © CORDIS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Display technology/LEDs/SS Lighting/OLEDs

Transparent artificial nacre: A brick wall at the nanoscale January 22nd, 2015

New conductive coatings for flexible touchscreens – presentation at nano tech 2015 in Japan January 22nd, 2015

Nano - "Green" metal oxides ... January 13th, 2015

GraphExeter defies the Achilles heel of 'wonder material' graphene January 8th, 2015

Possible Futures

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanotechnology in Energy Applications Market Research Report 2014-2018: Radiant Insights, Inc January 15th, 2015

'Mind the gap' between atomically thin materials December 23rd, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Academic/Education

Rice's Naomi Halas to direct Smalley Institute: Optics pioneer will lead Rice's multidisciplinary science institute January 15th, 2015

SUNY Board Appoints Dr. Alain Kaloyeros as Founding President of SUNY Polytechnic Institute January 13th, 2015

CNSE's Smart System Technology & Commercialization Center Successfully Recertifies as ISO 9001:2008 January 12th, 2015

SUNY Poly Now Accepting Applications to the Colleges of Nanoscale Science and Engineering for Fall 2015: Full Scholarships Available to Incoming CNSE Students January 7th, 2015

Chip Technology

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

New method to generate arbitrary optical pulses January 21st, 2015

New signal amplification process set to transform communications, imaging, computing: UC San Diego researchers discover a mechanism to amplify signals in optoelectronic systems that is far more efficient than standard processes January 21st, 2015

Solving an organic semiconductor mystery: Berkeley Lab researchers uncover hidden structures in domain interfaces that hamper performance January 16th, 2015

Nanoelectronics

Rice-sized laser, powered one electron at a time, bodes well for quantum computing January 15th, 2015

Rapid journey through a crystal lattice: Researchers measure how fast electrons move through single atomic layers January 14th, 2015

A new step towards using graphene in electronic applications January 14th, 2015

SUNY Board Appoints Dr. Alain Kaloyeros as Founding President of SUNY Polytechnic Institute January 13th, 2015

Announcements

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Solar/Photovoltaic

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

New technique helps probe performance of organic solar cell materials January 23rd, 2015

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE