Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Touchscreens Made of Carbon

Touchscreen that contain carbon nanotubes can be made of low-priced renewable materials
Touchscreen that contain carbon nanotubes can be made of low-priced renewable materials

Abstract:
Touchscreens are in - although the technology still has its price. The little screens contain rare and expensive elements. This is the reason why researchers at Fraunhofer are coming up with an alternative display made of low-priced renewable raw materials available all over the world. The researchers are presenting touchscreens that contain carbon nanotubes at the nano tech 2011 fair in Tokyo (Hall 5, Stand E-18-11) from February 16-18.

Touchscreens Made of Carbon

Munich, Germany | Posted on January 28th, 2011

Just touching it slightly with the tips of your fingers is enough. You can effortlessly write, navigate, open menu windows or rotate images on touchscreens. Within fractions of a second your touch is translated into control commands that a computer understands. At first glance, this technology borders on the miraculous, but in real life this mystery just is a wafer-thin electrode under the glass surface of the display made of indium-tin-oxide, ITO. This material is nothing short of ideal for use in touchscreens because it is excellent at conducting slight currents and lets the colors of the display pass through unhindered. But, there is a little problem: there are very few deposits of indium anywhere in the world. In the long term, the manufacturers of electronic gadgets are afraid that they will be dependent upon the prices set by suppliers. This is the reason why indium is one of what people call "strategic metals."

Therefore, private industry is very interested in alternatives to ITO that are similarly efficient. The researchers at Fraunhofer have succeeded at coming up with a new material for electrodes that is on the same level as ITO and on top of it is much cheaper. Its main components are carbon nanotubes and low-cost polymers. This new electrode foil is composed of two layers. One is the carrier, a thin foil made of inexpensive polyethylenterephthalate PET used for making plastic bottles. Then a mixture of carbon-nanotubes and electrically conducting polymers is added that is applied to the PET as a solution and forms a thin film when it dries.

In comparison to ITO, these combinations of plastics have not been particularly durable because humidity, pressure or UV light put a strain on the polymers. The layers became brittle and broke down. Only carbon nanotubes have made them stable. The carbon nanotubes harden on the PET to create a network where the electrically conducting polymers can be firmly anchored. That means that this layer is durable in the long run. Ivica Kolaric, project manager from Fraunhofer Institute for Manufacturing Engineering and Automation IPA, concedes that "the electrical resistance of our layer is somewhat greater than that of the ITO, but it's easily enough for an application in electrical systems." Its merits are unbeatable: carbon is not only low-cost and available all over the world. It is also a renewable resource that you can get from organic matter such as wood. Kolaric and his colleagues will be presenting their carbon touchdisplay at the 2011 nano tech fair. Since 2003 Fraunhofer researchers show their developments at the annual trade show.

There are a whole series of implementations for the new technology. This foil is flexible and can be used in a variety of ways. Kolaric sums up by saying "we could even make photovoltaic foils out of it to line corrugated roofs or other uneven structures." The researcher has already set up pilot production where the foil can be enhanced for a wide range of applications.

####

For more information, please click here

Contacts:
Franz Miller
Head of Press and Public Relations
Headquarters of the Fraunhofer-Gesellschaft
Hansastraße 27c
80686 Munich, Germany
franz.miller(at)zv.fraunhofer.de
Phone +49 89 1205-1300
Fax +49 89 1205-7515

Copyright © Fraunhofer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

Simulations predict flat liquid May 21st, 2015

Display technology/LEDs/SS Lighting/OLEDs

Statement by QD Vision regarding European Parliament’s Vote on Cadmium-Based Quantum Dots May 20th, 2015

ORNL demonstrates first large-scale graphene fabrication May 14th, 2015

CLAIRE brings electron microscopy to soft materials: Berkeley researchers develop breakthrough technique for noninvasive nanoscale imaging May 14th, 2015

QD Vision to Showcase Quantum Dot “Firsts” at Display Week 2015: Executives will present, demo current and future quantum dot technology May 13th, 2015

Possible Futures

Simulations predict flat liquid May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

NNCO and Museum of Science Fiction to Collaborate on Nanotechnology and 3D Printing Panels at Awesome Con May 19th, 2015

Quantum 'gruyères' for spintronics of the future: Topological insulators become a little less 'elusive' May 12th, 2015

Academic/Education

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

New JEOL E-Beam Lithography System to Enhance Quantum NanoFab Capabilities May 6th, 2015

FEI Partners With the George Washington University to Equip New Science & Engineering Hall: Suite of new high-performance microscopes will be used for cutting-edge experiments at GW’s new research facility April 29th, 2015

Renishaw Raman systems used to study 2D materials at Boston University, Massachusetts, USA. April 28th, 2015

Nanotubes/Buckyballs/Fullerenes

Researchers develop new way to manufacture nanofibers May 21st, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Cotton fibres instead of carbon nanotubes May 9th, 2015

A better way to build DNA scaffolds: McGill researchers devise new technique to produce long, custom-designed DNA strands May 6th, 2015

Announcements

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

INSIDDE: Uncovering the real history of art using a graphene scanner May 21st, 2015

Events/Classes

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

Aspen Aerogels to Present at the Cowen and Company Technology, Media & Telecom Conference May 21st, 2015

Directa Plus in Barcelona to present the innovative project GEnIuS for oil spills clean-up activities: The company has created a graphene-based product for the remediation of water contaminated by oil and hydrocarbons May 21st, 2015

Nanometrics Announces Live Webcast of Upcoming Investor and Analyst Day May 20th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project